99693edo

From Xenharmonic Wiki
Revision as of 13:17, 10 January 2025 by MisterShafXen (talk | contribs) (Theory)
Jump to navigation Jump to search
← 99692edo 99693edo 99694edo →
Prime factorization 32 × 11 × 19 × 53
Step size 0.012037 ¢ 
Fifth 58317\99693 (701.959 ¢) (→ 19439\33231)
Semitones (A1:m2) 9447:7494 (113.7 ¢ : 90.2 ¢)
Dual sharp fifth 58317\99693 (701.959 ¢) (→ 19439\33231)
Dual flat fifth 58316\99693 (701.947 ¢)
Dual major 2nd 16940\99693 (203.906 ¢) (→ 1540\9063)
Consistency limit 7
Distinct consistency limit 7

99693 equal divisions of the octave (99693edo) is the tuning that divides the octave into 99693 equal steps of about 0.012 cents. It is notable for being the edo below 100000 with the lowest maximum error, using direct approximation for each harmonic, for the first 547 harmonics (547 being the 100th prime number).

Theory

Approximation of odd harmonics in 99693edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99 101 103 105 107 109 111 113 115 117 119 123 125 127
Error Absolute (¢) +0.004 +0.000 +0.004 -0.004 -0.001 +0.001 +0.004 -0.005 +0.004 -0.004 -0.006 +0.001 +0.000 +0.004 +0.004 +0.003 +0.005 -0.000 +0.005 -0.005 +0.005 -0.004 +0.004 -0.003 -0.001 +0.005 -0.001 -0.004 -0.004 +0.000 +0.000 +0.001 +0.004 -0.002 +0.003 -0.002 +0.005 +0.003 +0.002 +0.004 +0.002 -0.005 -0.004 -0.004 +0.005 -0.004 +0.005 -0.001 -0.005 -0.001 -0.004 -0.003 -0.001 +0.005 +0.004 -0.001 -0.005 -0.003 -0.001 -0.001 +0.001 +0.001
Relative (%) +33.3 +2.2 +36.6 -33.3 -11.6 +6.3 +35.6 -43.3 +36.2 -30.1 -46.2 +4.5 +0.0 +30.1 +30.7 +21.7 +38.8 -3.4 +39.7 -43.2 +38.8 -31.1 +37.4 -26.8 -10.0 +42.6 -9.4 -30.4 -33.4 +0.3 +3.3 +8.6 +37.0 -12.9 +26.0 -18.0 +37.8 +24.9 +18.6 +33.4 +19.4 -41.1 -36.6 -29.3 +42.9 -35.9 +38.5 -11.1 -45.0 -7.7 -29.7 -27.8 -6.8 +40.0 +29.9 -10.1 -44.0 -27.0 -6.7 -9.9 +6.7 +5.8
Steps
(reduced)
158010
(58317)
231480
(32094)
279874
(80488)
316019
(16940)
344881
(45802)
368908
(69829)
389490
(90411)
407491
(8719)
423489
(24717)
437883
(39111)
450967
(52195)
462960
(64188)
474029
(75257)
484307
(85535)
493899
(95127)
502891
(4426)
511354
(12889)
519346
(20881)
526918
(28453)
534110
(35645)
540961
(42496)
547499
(49034)
553754
(55289)
559747
(61282)
565501
(67036)
571034
(72569)
576361
(77896)
581498
(83033)
586458
(87993)
591253
(92788)
595893
(97428)
600388
(2230)
604747
(6589)
608977
(10819)
613087
(14929)
617082
(18924)
620970
(22812)
624755
(26597)
628443
(30285)
632039
(33881)
635547
(37389)
638971
(40813)
642316
(44158)
645585
(47427)
648782
(50624)
651908
(53750)
654969
(56811)
657965
(59807)
660900
(62742)
663777
(65619)
666597
(68439)
669363
(71205)
672077
(73919)
674741
(76583)
677356
(79198)
679924
(81766)
682447
(84289)
684927
(86769)
687365
(89207)
692120
(93962)
694440
(96282)
696723
(98565)