16edf
← 15edf | 16edf | 17edf → |
16EDF is the equal division of the just perfect fifth into 16 parts of 43.8722 cents each, corresponding to 27.3522 edo (similar to every third step of 82edo). 16edf contains good approximations of the 7th and 13th harmonics.
It serves as a good approximation to halftone temperament, containing the ~7/5 generator at 13 steps.
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -15.5 | -15.5 | +13.0 | +21.5 | +13.0 | +9.3 | -2.5 | +13.0 | +6.1 | +16.5 | -2.5 |
Relative (%) | -35.2 | -35.2 | +29.6 | +49.0 | +29.6 | +21.3 | -5.7 | +29.6 | +13.8 | +37.7 | -5.7 | |
Steps (reduced) |
27 (11) |
43 (11) |
55 (7) |
64 (0) |
71 (7) |
77 (13) |
82 (2) |
87 (7) |
91 (11) |
95 (15) |
98 (2) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -9.4 | -6.1 | +6.1 | -17.9 | +8.7 | -2.5 | -8.3 | -9.4 | -6.1 | +1.1 | +11.9 |
Relative (%) | -21.5 | -13.9 | +13.8 | -40.9 | +19.9 | -5.7 | -19.0 | -21.4 | -13.9 | +2.5 | +27.1 | |
Steps (reduced) |
101 (5) |
104 (8) |
107 (11) |
109 (13) |
112 (0) |
114 (2) |
116 (4) |
118 (6) |
120 (8) |
122 (10) |
124 (12) |
Intervals
degree | cents value | corresponding JI intervals |
Halftone[6] notation (using ups and downs) | comments |
---|---|---|---|---|
0 | 0.0000 | 1/1 | C | |
1 | 43.8722 | 40/39, 39/38 | ^C | |
2 | 87.7444 | 20/19 | Db | |
3 | 131.6166 | 55/51, (27/25) | vD | |
4 | 175.4888 | (21/19) | D | |
5 | 219.3609 | vE | ||
6 | 263.2331 | (7/6) | E | |
7 | 307.1053 | Fb | ||
8 | 350.9775 | 60/49, 49/40 | vF | |
9 | 394.8497 | (44/35) | F | |
10 | 438.7219 | (9/7) | Ab | |
11 | 482.5941 | vA | ||
12 | 526.4663 | (19/14) | A | |
13 | 570.3384 | (25/18), 153/110, 112/81 | B | |
14 | 614.2106 | (10/7) | Cb | |
15 | 658.0828 | 19/13 | vC | |
16 | 701.9550 | 3/2 (exact) | C | just perfect fifth |
17 | 745.8272 | 20/13 | ||
18 | 789.6994 | 30/19 | ||
19 | 833.5716 | 55/34 | ||
20 | 877.4438 | |||
21 | 921.3159 | |||
22 | 965.1881 | 7/4 | ||
23 | 1009.0603 | |||
24 | 1052.9325 | 90/49, (11/6) | ||
25 | 1096.8047 | (66/35) | ||
26 | 1140.6769 | |||
27 | 1184.5491 | |||
28 | 1228.4213 | 128/63 | ||
29 | 1272.2934 | 25/12 | ||
30 | 1316.1656 | 15/7 | ||
31 | 1360.0378 | 57/26 | ||
32 | 1403.9100 | 9/4 (exact) | pythagorean ninth |