← 630edo 631edo 632edo →
Prime factorization 631 (prime)
Step size 1.90174 ¢ 
Fifth 369\631 (701.743 ¢)
Semitones (A1:m2) 59:48 (112.2 ¢ : 91.28 ¢)
Consistency limit 9
Distinct consistency limit 9

Template:EDO intro

Theory

631edo is consistent to the 9-odd-limit, with all of the odd harmonics having a flat tendency. Using the patent val, the equal temperament tempers out 4375/4374, 41503/41472, 32805/32768 and 12005/11979 in the 11-limit; 1575/1573, 4375/4374, 4459/4455, 4225/4224 and 83349/83200 in the 13-limit.

Odd harmonics

Approximation of odd harmonics in 631edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) -0.212 -0.260 -0.839 -0.423 +0.188 +0.043 -0.472 -0.360 -0.841 +0.851 -0.699
Relative (%) -11.1 -13.7 -44.1 -22.3 +9.9 +2.3 -24.8 -18.9 -44.2 +44.8 -36.8
Steps
(reduced)
1000
(369)
1465
(203)
1771
(509)
2000
(107)
2183
(290)
2335
(442)
2465
(572)
2579
(55)
2680
(156)
2772
(248)
2854
(330)

Subsets and supersets

631edo is the 115th prime EDO.

Regular temperament properties

Template:Comma basis begin |- | 2.3 | [-1000 631 | [631 1000]] | 0.0668 | 0.0668 | 3.51 |- | 2.3.5 | 32805/32768, [-50 -71 70 | [631 1000 1465]] | 0.0818 | 0.0585 | 3.08 |- | 2.3.5.7 | 4375/4374, 32805/32768, 678223072849/675000000000 | [631 1000 1465 1771]] | 0.1361 | 0.1067 | 5.61 |- | 2.3.5.7.11 | 4375/4374, 41503/41472, 32805/32768, 12005/11979 | [631 1000 1465 1771 2183]] | 0.0980 | 0.1221 | 6.42 |- | 2.3.5.7.11.13 | 1575/1573, 4375/4374, 4459/4455, 4225/4224, 83349/83200 | [631 1000 1465 1771 2183 2335]] | 0.0797 | 0.1187 | 6.24 |- | 2.3.5.7.11.13.17 | 1225/1224, 1701/1700, 833/832, 1575/1573, 4459/4455, 4225/4224 | [631 1000 1465 1771 2183 2335 2579]] | 0.0809 | 0.1099 | 5.78 Template:Comma basis end

Rank-2 temperaments

Template:Rank-2 begin |- | 1 | 262\631 | 498.257 | 4/3 | Helmholtz / Pontiac Template:Rank-2 end Template:Orf

Music

Francium