61edt

Revision as of 07:23, 6 October 2024 by BudjarnLambeth (talk | contribs) (Add intro add intervals)
← 60edt 61edt 62edt →
Prime factorization 61 (prime)
Step size 31.1796 ¢ 
Octave 38\61edt (1184.82 ¢)
Consistency limit 3
Distinct consistency limit 3

61 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 61edt or 61ed3), is a nonoctave tuning system that divides the interval of 3/1 into 61 equal parts of about 31.2 ¢ each. Each step represents a frequency ratio of 31/61, or the 61st root of 3.

61edt provides a good tuning of mintaka temperament in the 3.7.11 subgroup, and contains an intersection of it with Bohlen-Pierce-Stearns, despite the 5th harmonic being rather far from accurate. Notably, the octave is almost halfway in between steps, and therefore this system minimizes the prospect of a shimmering octave appearing, although it has a good 4th harmonic.

Intervals

Steps Cents Hekts Approximate ratios
0 0 0 1/1
1 31.2 21.3
2 62.4 42.6
3 93.5 63.9 19/18
4 124.7 85.2 14/13, 29/27
5 155.9 106.6 23/21
6 187.1 127.9
7 218.3 149.2 17/15, 25/22
8 249.4 170.5 15/13, 22/19
9 280.6 191.8 27/23
10 311.8 213.1 6/5
11 343 234.4
12 374.2 255.7
13 405.3 277 19/15, 29/23
14 436.5 298.4 9/7
15 467.7 319.7 17/13
16 498.9 341
17 530.1 362.3 19/14, 34/25
18 561.2 383.6 18/13, 29/21
19 592.4 404.9
20 623.6 426.2 33/23
21 654.8 447.5 19/13
22 686 468.9
23 717.1 490.2
24 748.3 511.5
25 779.5 532.8 11/7
26 810.7 554.1
27 841.8 575.4
28 873 596.7
29 904.2 618
30 935.4 639.3
31 966.6 660.7
32 997.7 682
33 1028.9 703.3
34 1060.1 724.6 35/19
35 1091.3 745.9
36 1122.5 767.2 21/11
37 1153.6 788.5 35/18
38 1184.8 809.8
39 1216 831.1
40 1247.2 852.5 35/17
41 1278.4 873.8 23/11
42 1309.5 895.1
43 1340.7 916.4 13/6
44 1371.9 937.7
45 1403.1 959
46 1434.3 980.3
47 1465.4 1001.6 7/3
48 1496.6 1023
49 1527.8 1044.3
50 1559 1065.6
51 1590.2 1086.9 5/2
52 1621.3 1108.2 23/9
53 1652.5 1129.5 13/5
54 1683.7 1150.8
55 1714.9 1172.1 35/13
56 1746.1 1193.4
57 1777.2 1214.8
58 1808.4 1236.1
59 1839.6 1257.4
60 1870.8 1278.7
61 1902 1300 3/1

Harmonics

Approximation of harmonics in 61edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -15.2 +0.0 +0.8 -11.3 -15.2 -1.4 -14.3 +0.0 +4.7 -4.4 +0.8
Relative (%) -48.7 +0.0 +2.7 -36.3 -48.7 -4.6 -46.0 +0.0 +15.0 -14.2 +2.7
Steps
(reduced)
38
(38)
61
(0)
77
(16)
89
(28)
99
(38)
108
(47)
115
(54)
122
(0)
128
(6)
133
(11)
138
(16)
Approximation of harmonics in 61edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -13.0 +14.6 -11.3 +1.7 -9.8 -15.2 -15.2 -10.5 -1.4 +11.6 -3.0
Relative (%) -41.8 +46.7 -36.3 +5.3 -31.3 -48.7 -48.9 -33.7 -4.6 +37.1 -9.7
Steps
(reduced)
142
(20)
147
(25)
150
(28)
154
(32)
157
(35)
160
(38)
163
(41)
166
(44)
169
(47)
172
(50)
174
(52)
  This page is a stub. You can help the Xenharmonic Wiki by expanding it.