198edt

Revision as of 09:34, 5 October 2024 by BudjarnLambeth (talk | contribs) (Intro inter harm)
This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 197edt 198edt 199edt →
Prime factorization 2 × 32 × 11
Step size 9.60583 ¢ 
Octave 125\198edt (1200.73 ¢)
Consistency limit 12
Distinct consistency limit 12

198 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 198edt or 198ed3), is a nonoctave tuning system that divides the interval of 3/1 into 198 equal parts of about 9.61 ¢ each. Each step represents a frequency ratio of 31/198, or the 198th root of 3.

Intervals

Steps Cents Hekts Approximate ratios
0 0 0 1/1
1 9.61 6.57
2 19.21 13.13
3 28.82 19.7 63/62
4 38.42 26.26 45/44, 46/45
5 48.03 32.83 36/35, 37/36
6 57.64 39.39 30/29, 31/30
7 67.24 45.96 26/25
8 76.85 52.53 23/22
9 86.45 59.09 41/39
10 96.06 65.66 37/35, 55/52
11 105.66 72.22 17/16
12 115.27 78.79 31/29, 47/44
13 124.88 85.35 43/40
14 134.48 91.92 40/37
15 144.09 98.48 25/23, 63/58
16 153.69 105.05 47/43
17 163.3 111.62
18 172.91 118.18 21/19
19 182.51 124.75 10/9
20 192.12 131.31 19/17
21 201.72 137.88
22 211.33 144.44 26/23
23 220.93 151.01 25/22
24 230.54 157.58 8/7
25 240.15 164.14 31/27, 54/47
26 249.75 170.71 52/45
27 259.36 177.27 36/31, 43/37
28 268.96 183.84
29 278.57 190.4 27/23, 47/40
30 288.18 196.97 13/11
31 297.78 203.54 19/16
32 307.39 210.1 37/31, 43/36
33 316.99 216.67
34 326.6 223.23 29/24, 35/29
35 336.2 229.8 17/14
36 345.81 236.36
37 355.42 242.93 27/22, 43/35
38 365.02 249.49 21/17, 58/47
39 374.63 256.06 36/29
40 384.23 262.63
41 393.84 269.19 54/43, 64/51
42 403.45 275.76 24/19
43 413.05 282.32 33/26, 47/37
44 422.66 288.89 37/29, 60/47
45 432.26 295.45
46 441.87 302.02 40/31
47 451.47 308.59 48/37
48 461.08 315.15 30/23, 47/36
49 470.69 321.72 21/16
50 480.29 328.28 33/25, 62/47
51 489.9 334.85 69/52
52 499.5 341.41
53 509.11 347.98 51/38, 55/41
54 518.72 354.55 27/20, 58/43
55 528.32 361.11 19/14
56 537.93 367.68 15/11
57 547.53 374.24 48/35
58 557.14 380.81 40/29, 69/50
59 566.74 387.37 43/31, 68/49
60 576.35 393.94 60/43
61 585.96 400.51
62 595.56 407.07 55/39
63 605.17 413.64 44/31
64 614.77 420.2
65 624.38 426.77 33/23
66 633.99 433.33 62/43
67 643.59 439.9 29/20
68 653.2 446.46 35/24
69 662.8 453.03 22/15
70 672.41 459.6 28/19
71 682.01 466.16 43/29
72 691.62 472.73
73 701.23 479.29 3/2
74 710.83 485.86
75 720.44 492.42 47/31, 50/33
76 730.04 498.99 32/21
77 739.65 505.56 23/15
78 749.26 512.12 37/24
79 758.86 518.69 31/20
80 768.47 525.25
81 778.07 531.82 47/30, 58/37, 69/44
82 787.68 538.38 41/26, 52/33
83 797.28 544.95 65/41
84 806.89 551.52 51/32
85 816.5 558.08
86 826.1 564.65 29/18
87 835.71 571.21 47/29
88 845.31 577.78 44/27, 57/35
89 854.92 584.34
90 864.53 590.91 28/17
91 874.13 597.47 58/35, 63/38
92 883.74 604.04 5/3
93 893.34 610.61 62/37
94 902.95 617.17 32/19
95 912.55 623.74
96 922.16 630.3 46/27, 63/37
97 931.77 636.87
98 941.37 643.43 31/18
99 950.98 650
100 960.58 656.57 47/27, 54/31
101 970.19 663.13
102 979.8 669.7 37/21, 44/25
103 989.4 676.26 62/35
104 999.01 682.83 57/32
105 1008.61 689.39 43/24
106 1018.22 695.96 9/5
107 1027.82 702.53 38/21
108 1037.43 709.09 51/28
109 1047.04 715.66
110 1056.64 722.22 35/19, 46/25
111 1066.25 728.79 50/27
112 1075.85 735.35 54/29
113 1085.46 741.92 58/31
114 1095.07 748.48 32/17
115 1104.67 755.05
116 1114.28 761.62
117 1123.88 768.18 44/23
118 1133.49 774.75
119 1143.09 781.31 60/31
120 1152.7 787.88
121 1162.31 794.44 45/23
122 1171.91 801.01 63/32
123 1181.52 807.58
124 1191.12 814.14
125 1200.73 820.71 2/1
126 1210.34 827.27
127 1219.94 833.84
128 1229.55 840.4 57/28
129 1239.15 846.97 45/22
130 1248.76 853.54
131 1258.36 860.1 60/29
132 1267.97 866.67 52/25
133 1277.58 873.23 23/11
134 1287.18 879.8
135 1296.79 886.36 55/26
136 1306.39 892.93
137 1316 899.49 62/29
138 1325.61 906.06 43/20
139 1335.21 912.63
140 1344.82 919.19 50/23
141 1354.42 925.76 35/16
142 1364.03 932.32 11/5
143 1373.63 938.89 42/19
144 1383.24 945.45 20/9
145 1392.85 952.02 38/17
146 1402.45 958.59
147 1412.06 965.15 52/23
148 1421.66 971.72 25/11
149 1431.27 978.28 16/7
150 1440.88 984.85 23/10
151 1450.48 991.41 37/16
152 1460.09 997.98
153 1469.69 1004.55
154 1479.3 1011.11 47/20
155 1488.9 1017.68 26/11
156 1498.51 1024.24 19/8
157 1508.12 1030.81 43/18
158 1517.72 1037.37
159 1527.33 1043.94 29/12
160 1536.93 1050.51 17/7
161 1546.54 1057.07 22/9
162 1556.15 1063.64
163 1565.75 1070.2 42/17
164 1575.36 1076.77
165 1584.96 1083.33
166 1594.57 1089.9
167 1604.17 1096.46 48/19
168 1613.78 1103.03 33/13
169 1623.39 1109.6 23/9
170 1632.99 1116.16
171 1642.6 1122.73 31/12
172 1652.2 1129.29
173 1661.81 1135.86 47/18
174 1671.42 1142.42 21/8
175 1681.02 1148.99 66/25
176 1690.63 1155.56 69/26
177 1700.23 1162.12
178 1709.84 1168.69 51/19
179 1719.44 1175.25 27/10
180 1729.05 1181.82 19/7
181 1738.66 1188.38
182 1748.26 1194.95
183 1757.87 1201.52 58/21, 69/25
184 1767.47 1208.08
185 1777.08 1214.65
186 1786.69 1221.21
187 1796.29 1227.78 48/17
188 1805.9 1234.34
189 1815.5 1240.91
190 1825.11 1247.47 66/23
191 1834.71 1254.04
192 1844.32 1260.61 29/10
193 1853.93 1267.17 35/12
194 1863.53 1273.74 44/15
195 1873.14 1280.3 62/21
196 1882.74 1286.87
197 1892.35 1293.43
198 1901.96 1300 3/1

Harmonics

Approximation of harmonics in 198edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +0.73 +0.00 +1.46 -0.62 +0.73 +2.82 +2.19 +0.00 +0.11 -1.60 +1.46
Relative (%) +7.6 +0.0 +15.2 -6.5 +7.6 +29.4 +22.8 +0.0 +1.1 -16.6 +15.2
Steps
(reduced)
125
(125)
198
(0)
250
(52)
290
(92)
323
(125)
351
(153)
375
(177)
396
(0)
415
(19)
432
(36)
448
(52)
Approximation of harmonics in 198edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -2.63 +3.55 -0.62 +2.92 +3.63 +0.73 +3.18 +0.84 +2.82 -0.87 -0.98
Relative (%) -27.4 +37.0 -6.5 +30.4 +37.7 +7.6 +33.2 +8.7 +29.4 -9.0 -10.2
Steps
(reduced)
462
(66)
476
(80)
488
(92)
500
(104)
511
(115)
521
(125)
531
(135)
540
(144)
549
(153)
557
(161)
565
(169)