197edt
← 196edt | 197edt | 198edt → |
197 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 197edt or 197ed3), is a nonoctave tuning system that divides the interval of 3/1 into 197 equal parts of about 9.65 ¢ each. Each step represents a frequency ratio of 31/197, or the 197th root of 3.
197edt can be described as approximately 124.293edo. This implies that each step of 197edt can be approximated by 7 steps of 870edo.
It is a very strong no-twos, no-fives 19-limit system.
Intervals
Steps | Cents | Hekts | Approximate ratios |
---|---|---|---|
0 | 0 | 0 | 1/1 |
1 | 9.65 | 6.6 | |
2 | 19.31 | 13.2 | |
3 | 28.96 | 19.8 | |
4 | 38.62 | 26.4 | |
5 | 48.27 | 32.99 | 37/36 |
6 | 57.93 | 39.59 | 30/29 |
7 | 67.58 | 46.19 | |
8 | 77.24 | 52.79 | 23/22 |
9 | 86.89 | 59.39 | 41/39 |
10 | 96.55 | 65.99 | |
11 | 106.2 | 72.59 | |
12 | 115.86 | 79.19 | 31/29, 46/43 |
13 | 125.51 | 85.79 | 43/40 |
14 | 135.16 | 92.39 | 40/37 |
15 | 144.82 | 98.98 | 62/57 |
16 | 154.47 | 105.58 | 47/43 |
17 | 164.13 | 112.18 | 11/10 |
18 | 173.78 | 118.78 | 21/19 |
19 | 183.44 | 125.38 | 10/9 |
20 | 193.09 | 131.98 | 19/17 |
21 | 202.75 | 138.58 | |
22 | 212.4 | 145.18 | 26/23 |
23 | 222.06 | 151.78 | 58/51 |
24 | 231.71 | 158.38 | |
25 | 241.36 | 164.97 | 23/20, 54/47 |
26 | 251.02 | 171.57 | |
27 | 260.67 | 178.17 | 43/37 |
28 | 270.33 | 184.77 | |
29 | 279.98 | 191.37 | 47/40 |
30 | 289.64 | 197.97 | 13/11 |
31 | 299.29 | 204.57 | 44/37 |
32 | 308.95 | 211.17 | 49/41 |
33 | 318.6 | 217.77 | |
34 | 328.26 | 224.37 | 52/43 |
35 | 337.91 | 230.96 | 62/51 |
36 | 347.57 | 237.56 | 11/9 |
37 | 357.22 | 244.16 | |
38 | 366.87 | 250.76 | 21/17, 47/38 |
39 | 376.53 | 257.36 | 41/33, 46/37 |
40 | 386.18 | 263.96 | |
41 | 395.84 | 270.56 | 49/39 |
42 | 405.49 | 277.16 | 43/34 |
43 | 415.15 | 283.76 | 47/37 |
44 | 424.8 | 290.36 | 23/18 |
45 | 434.46 | 296.95 | 9/7 |
46 | 444.11 | 303.55 | |
47 | 453.77 | 310.15 | 13/10 |
48 | 463.42 | 316.75 | 17/13 |
49 | 473.08 | 323.35 | |
50 | 482.73 | 329.95 | 37/28 |
51 | 492.38 | 336.55 | |
52 | 502.04 | 343.15 | |
53 | 511.69 | 349.75 | |
54 | 521.35 | 356.35 | |
55 | 531 | 362.94 | |
56 | 540.66 | 369.54 | 41/30 |
57 | 550.31 | 376.14 | |
58 | 559.97 | 382.74 | 47/34 |
59 | 569.62 | 389.34 | 57/41 |
60 | 579.28 | 395.94 | |
61 | 588.93 | 402.54 | 52/37 |
62 | 598.58 | 409.14 | 41/29 |
63 | 608.24 | 415.74 | 27/19 |
64 | 617.89 | 422.34 | 10/7 |
65 | 627.55 | 428.93 | |
66 | 637.2 | 435.53 | 13/9 |
67 | 646.86 | 442.13 | |
68 | 656.51 | 448.73 | 19/13 |
69 | 666.17 | 455.33 | |
70 | 675.82 | 461.93 | 34/23 |
71 | 685.48 | 468.53 | 49/33 |
72 | 695.13 | 475.13 | |
73 | 704.79 | 481.73 | |
74 | 714.44 | 488.32 | |
75 | 724.09 | 494.92 | 41/27 |
76 | 733.75 | 501.52 | |
77 | 743.4 | 508.12 | 43/28, 63/41 |
78 | 753.06 | 514.72 | 17/11 |
79 | 762.71 | 521.32 | |
80 | 772.37 | 527.92 | |
81 | 782.02 | 534.52 | 11/7 |
82 | 791.68 | 541.12 | 30/19, 49/31 |
83 | 801.33 | 547.72 | 27/17 |
84 | 810.99 | 554.31 | |
85 | 820.64 | 560.91 | |
86 | 830.3 | 567.51 | 21/13 |
87 | 839.95 | 574.11 | |
88 | 849.6 | 580.71 | 49/30 |
89 | 859.26 | 587.31 | 23/14 |
90 | 868.91 | 593.91 | 38/23 |
91 | 878.57 | 600.51 | |
92 | 888.22 | 607.11 | |
93 | 897.88 | 613.71 | |
94 | 907.53 | 620.3 | 49/29 |
95 | 917.19 | 626.9 | |
96 | 926.84 | 633.5 | |
97 | 936.5 | 640.1 | |
98 | 946.15 | 646.7 | 19/11 |
99 | 955.8 | 653.3 | 33/19 |
100 | 965.46 | 659.9 | |
101 | 975.11 | 666.5 | |
102 | 984.77 | 673.1 | |
103 | 994.42 | 679.7 | |
104 | 1004.08 | 686.29 | |
105 | 1013.73 | 692.89 | |
106 | 1023.39 | 699.49 | |
107 | 1033.04 | 706.09 | 69/38 |
108 | 1042.7 | 712.69 | 42/23 |
109 | 1052.35 | 719.29 | |
110 | 1062.01 | 725.89 | |
111 | 1071.66 | 732.49 | 13/7 |
112 | 1081.31 | 739.09 | |
113 | 1090.97 | 745.69 | 62/33 |
114 | 1100.62 | 752.28 | 17/9 |
115 | 1110.28 | 758.88 | 19/10 |
116 | 1119.93 | 765.48 | 21/11 |
117 | 1129.59 | 772.08 | |
118 | 1139.24 | 778.68 | |
119 | 1148.9 | 785.28 | 33/17 |
120 | 1158.55 | 791.88 | 41/21 |
121 | 1168.21 | 798.48 | |
122 | 1177.86 | 805.08 | |
123 | 1187.52 | 811.68 | |
124 | 1197.17 | 818.27 | |
125 | 1206.82 | 824.87 | |
126 | 1216.48 | 831.47 | |
127 | 1226.13 | 838.07 | 69/34 |
128 | 1235.79 | 844.67 | |
129 | 1245.44 | 851.27 | 39/19 |
130 | 1255.1 | 857.87 | |
131 | 1264.75 | 864.47 | 27/13 |
132 | 1274.41 | 871.07 | |
133 | 1284.06 | 877.66 | 21/10 |
134 | 1293.72 | 884.26 | 19/9 |
135 | 1303.37 | 890.86 | |
136 | 1313.02 | 897.46 | |
137 | 1322.68 | 904.06 | 58/27 |
138 | 1332.33 | 910.66 | 41/19 |
139 | 1341.99 | 917.26 | |
140 | 1351.64 | 923.86 | |
141 | 1361.3 | 930.46 | |
142 | 1370.95 | 937.06 | |
143 | 1380.61 | 943.65 | |
144 | 1390.26 | 950.25 | |
145 | 1399.92 | 956.85 | |
146 | 1409.57 | 963.45 | |
147 | 1419.23 | 970.05 | |
148 | 1428.88 | 976.65 | |
149 | 1438.53 | 983.25 | 39/17, 62/27 |
150 | 1448.19 | 989.85 | 30/13 |
151 | 1457.84 | 996.45 | |
152 | 1467.5 | 1003.05 | 7/3 |
153 | 1477.15 | 1009.64 | 54/23 |
154 | 1486.81 | 1016.24 | |
155 | 1496.46 | 1022.84 | |
156 | 1506.12 | 1029.44 | |
157 | 1515.77 | 1036.04 | |
158 | 1525.43 | 1042.64 | |
159 | 1535.08 | 1049.24 | 17/7 |
160 | 1544.74 | 1055.84 | |
161 | 1554.39 | 1062.44 | 27/11 |
162 | 1564.04 | 1069.04 | |
163 | 1573.7 | 1075.63 | |
164 | 1583.35 | 1082.23 | |
165 | 1593.01 | 1088.83 | |
166 | 1602.66 | 1095.43 | |
167 | 1612.32 | 1102.03 | 33/13 |
168 | 1621.97 | 1108.63 | |
169 | 1631.63 | 1115.23 | |
170 | 1641.28 | 1121.83 | |
171 | 1650.94 | 1128.43 | |
172 | 1660.59 | 1135.03 | 47/18, 60/23 |
173 | 1670.24 | 1141.62 | |
174 | 1679.9 | 1148.22 | |
175 | 1689.55 | 1154.82 | 69/26 |
176 | 1699.21 | 1161.42 | |
177 | 1708.86 | 1168.02 | 51/19 |
178 | 1718.52 | 1174.62 | 27/10 |
179 | 1728.17 | 1181.22 | 19/7 |
180 | 1737.83 | 1187.82 | 30/11 |
181 | 1747.48 | 1194.42 | |
182 | 1757.14 | 1201.02 | |
183 | 1766.79 | 1207.61 | |
184 | 1776.45 | 1214.21 | |
185 | 1786.1 | 1220.81 | |
186 | 1795.75 | 1227.41 | |
187 | 1805.41 | 1234.01 | |
188 | 1815.06 | 1240.61 | |
189 | 1824.72 | 1247.21 | 66/23 |
190 | 1834.37 | 1253.81 | |
191 | 1844.03 | 1260.41 | 29/10 |
192 | 1853.68 | 1267.01 | |
193 | 1863.34 | 1273.6 | |
194 | 1872.99 | 1280.2 | |
195 | 1882.65 | 1286.8 | |
196 | 1892.3 | 1293.4 | |
197 | 1901.96 | 1300 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -2.83 | +0.00 | +3.99 | +3.86 | -2.83 | +0.63 | +1.16 | +0.00 | +1.03 | +0.16 | +3.99 |
Relative (%) | -29.3 | +0.0 | +41.4 | +40.0 | -29.3 | +6.5 | +12.1 | +0.0 | +10.7 | +1.6 | +41.4 | |
Steps (reduced) |
124 (124) |
197 (0) |
249 (52) |
289 (92) |
321 (124) |
349 (152) |
373 (176) |
394 (0) |
413 (19) |
430 (36) |
446 (52) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.59 | -2.20 | +3.86 | -1.67 | -0.42 | -2.83 | +0.11 | -1.80 | +0.63 | -2.67 | -2.39 |
Relative (%) | +6.1 | -22.8 | +40.0 | -17.3 | -4.4 | -29.3 | +1.2 | -18.6 | +6.5 | -27.7 | -24.8 | |
Steps (reduced) |
460 (66) |
473 (79) |
486 (92) |
497 (103) |
508 (114) |
518 (124) |
528 (134) |
537 (143) |
546 (152) |
554 (160) |
562 (168) |
![]() |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |