195edt
![]() |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 194edt | 195edt | 196edt → |
195 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 195edt or 195ed3), is a nonoctave tuning system that divides the interval of 3/1 into 195 equal parts of about 9.75 ¢ each. Each step represents a frequency ratio of 31/195, or the 195th root of 3.
Intervals
Steps | Cents | Hekts | Approximate ratios |
---|---|---|---|
0 | 0 | 0 | 1/1 |
1 | 9.75 | 6.67 | |
2 | 19.51 | 13.33 | |
3 | 29.26 | 20 | 58/57 |
4 | 39.01 | 26.67 | 44/43, 45/44, 46/45 |
5 | 48.77 | 33.33 | 36/35 |
6 | 58.52 | 40 | 30/29 |
7 | 68.28 | 46.67 | |
8 | 78.03 | 53.33 | 23/22, 45/43, 68/65 |
9 | 87.78 | 60 | 20/19 |
10 | 97.54 | 66.67 | |
11 | 107.29 | 73.33 | 33/31 |
12 | 117.04 | 80 | 46/43 |
13 | 126.8 | 86.67 | |
14 | 136.55 | 93.33 | |
15 | 146.3 | 100 | 37/34, 62/57 |
16 | 156.06 | 106.67 | 35/32 |
17 | 165.81 | 113.33 | 11/10 |
18 | 175.57 | 120 | 52/47 |
19 | 185.32 | 126.67 | |
20 | 195.07 | 133.33 | 47/42 |
21 | 204.83 | 140 | 9/8 |
22 | 214.58 | 146.67 | 43/38 |
23 | 224.33 | 153.33 | 33/29, 41/36 |
24 | 234.09 | 160 | |
25 | 243.84 | 166.67 | 38/33 |
26 | 253.59 | 173.33 | 22/19 |
27 | 263.35 | 180 | |
28 | 273.1 | 186.67 | 41/35, 48/41 |
29 | 282.85 | 193.33 | |
30 | 292.61 | 200 | 45/38 |
31 | 302.36 | 206.67 | 56/47 |
32 | 312.12 | 213.33 | |
33 | 321.87 | 220 | 65/54 |
34 | 331.62 | 226.67 | 23/19, 63/52 |
35 | 341.38 | 233.33 | 39/32 |
36 | 351.13 | 240 | |
37 | 360.88 | 246.67 | |
38 | 370.64 | 253.33 | 26/21, 57/46 |
39 | 380.39 | 260 | |
40 | 390.14 | 266.67 | |
41 | 399.9 | 273.33 | 34/27 |
42 | 409.65 | 280 | 19/15 |
43 | 419.41 | 286.67 | 65/51 |
44 | 429.16 | 293.33 | 41/32 |
45 | 438.91 | 300 | 58/45 |
46 | 448.67 | 306.67 | 35/27, 57/44 |
47 | 458.42 | 313.33 | 43/33 |
48 | 468.17 | 320 | 38/29 |
49 | 477.93 | 326.67 | 29/22, 54/41 |
50 | 487.68 | 333.33 | 57/43 |
51 | 497.43 | 340 | 4/3 |
52 | 507.19 | 346.67 | 63/47 |
53 | 516.94 | 353.33 | 31/23, 58/43 |
54 | 526.7 | 360 | |
55 | 536.45 | 366.67 | 15/11 |
56 | 546.2 | 373.33 | 37/27, 48/35 |
57 | 555.96 | 380 | 40/29, 51/37 |
58 | 565.71 | 386.67 | 43/31 |
59 | 575.46 | 393.33 | 46/33 |
60 | 585.22 | 400 | |
61 | 594.97 | 406.67 | |
62 | 604.72 | 413.33 | |
63 | 614.48 | 420 | |
64 | 624.23 | 426.67 | 33/23, 43/30 |
65 | 633.99 | 433.33 | 62/43 |
66 | 643.74 | 440 | 29/20 |
67 | 653.49 | 446.67 | 35/24, 54/37 |
68 | 663.25 | 453.33 | 22/15 |
69 | 673 | 460 | |
70 | 682.75 | 466.67 | 43/29, 46/31 |
71 | 692.51 | 473.33 | |
72 | 702.26 | 480 | 3/2 |
73 | 712.01 | 486.67 | |
74 | 721.77 | 493.33 | 44/29 |
75 | 731.52 | 500 | 29/19 |
76 | 741.27 | 506.67 | 66/43 |
77 | 751.03 | 513.33 | 54/35 |
78 | 760.78 | 520 | 45/29 |
79 | 770.54 | 526.67 | 64/41 |
80 | 780.29 | 533.33 | |
81 | 790.04 | 540 | 30/19 |
82 | 799.8 | 546.67 | 27/17, 46/29 |
83 | 809.55 | 553.33 | |
84 | 819.3 | 560 | |
85 | 829.06 | 566.67 | |
86 | 838.81 | 573.33 | |
87 | 848.56 | 580 | 31/19 |
88 | 858.32 | 586.67 | 64/39 |
89 | 868.07 | 593.33 | 33/20 |
90 | 877.83 | 600 | |
91 | 887.58 | 606.67 | |
92 | 897.33 | 613.33 | 47/28 |
93 | 907.09 | 620 | |
94 | 916.84 | 626.67 | |
95 | 926.59 | 633.33 | 41/24 |
96 | 936.35 | 640 | |
97 | 946.1 | 646.67 | 19/11 |
98 | 955.85 | 653.33 | 33/19 |
99 | 965.61 | 660 | |
100 | 975.36 | 666.67 | 58/33, 65/37 |
101 | 985.12 | 673.33 | |
102 | 994.87 | 680 | |
103 | 1004.62 | 686.67 | |
104 | 1014.38 | 693.33 | |
105 | 1024.13 | 700 | 47/26 |
106 | 1033.88 | 706.67 | 20/11 |
107 | 1043.64 | 713.33 | |
108 | 1053.39 | 720 | 57/31, 68/37 |
109 | 1063.14 | 726.67 | |
110 | 1072.9 | 733.33 | |
111 | 1082.65 | 740 | 43/23 |
112 | 1092.4 | 746.67 | 62/33 |
113 | 1102.16 | 753.33 | 17/9 |
114 | 1111.91 | 760 | 19/10 |
115 | 1121.67 | 766.67 | 65/34 |
116 | 1131.42 | 773.33 | |
117 | 1141.17 | 780 | 29/15 |
118 | 1150.93 | 786.67 | 35/18, 68/35 |
119 | 1160.68 | 793.33 | 43/22 |
120 | 1170.43 | 800 | 57/29 |
121 | 1180.19 | 806.67 | |
122 | 1189.94 | 813.33 | |
123 | 1199.69 | 820 | 2/1 |
124 | 1209.45 | 826.67 | |
125 | 1219.2 | 833.33 | |
126 | 1228.96 | 840 | |
127 | 1238.71 | 846.67 | 45/22 |
128 | 1248.46 | 853.33 | 37/18 |
129 | 1258.22 | 860 | 60/29 |
130 | 1267.97 | 866.67 | |
131 | 1277.72 | 873.33 | 23/11 |
132 | 1287.48 | 880 | |
133 | 1297.23 | 886.67 | |
134 | 1306.98 | 893.33 | |
135 | 1316.74 | 900 | |
136 | 1326.49 | 906.67 | |
137 | 1336.25 | 913.33 | |
138 | 1346 | 920 | 37/17 |
139 | 1355.75 | 926.67 | 35/16 |
140 | 1365.51 | 933.33 | 11/5 |
141 | 1375.26 | 940 | |
142 | 1385.01 | 946.67 | |
143 | 1394.77 | 953.33 | 47/21 |
144 | 1404.52 | 960 | 9/4 |
145 | 1414.27 | 966.67 | 43/19 |
146 | 1424.03 | 973.33 | 41/18, 66/29 |
147 | 1433.78 | 980 | |
148 | 1443.54 | 986.67 | |
149 | 1453.29 | 993.33 | 44/19 |
150 | 1463.04 | 1000 | |
151 | 1472.8 | 1006.67 | |
152 | 1482.55 | 1013.33 | |
153 | 1492.3 | 1020 | 45/19 |
154 | 1502.06 | 1026.67 | |
155 | 1511.81 | 1033.33 | |
156 | 1521.56 | 1040 | 65/27 |
157 | 1531.32 | 1046.67 | 46/19, 63/26 |
158 | 1541.07 | 1053.33 | |
159 | 1550.82 | 1060 | |
160 | 1560.58 | 1066.67 | 32/13 |
161 | 1570.33 | 1073.33 | 52/21, 57/23 |
162 | 1580.09 | 1080 | |
163 | 1589.84 | 1086.67 | |
164 | 1599.59 | 1093.33 | 68/27 |
165 | 1609.35 | 1100 | 38/15 |
166 | 1619.1 | 1106.67 | |
167 | 1628.85 | 1113.33 | 41/16 |
168 | 1638.61 | 1120 | |
169 | 1648.36 | 1126.67 | 57/22 |
170 | 1658.11 | 1133.33 | |
171 | 1667.87 | 1140 | |
172 | 1677.62 | 1146.67 | 29/11 |
173 | 1687.38 | 1153.33 | |
174 | 1697.13 | 1160 | 8/3 |
175 | 1706.88 | 1166.67 | |
176 | 1716.64 | 1173.33 | 62/23 |
177 | 1726.39 | 1180 | |
178 | 1736.14 | 1186.67 | 30/11 |
179 | 1745.9 | 1193.33 | |
180 | 1755.65 | 1200 | |
181 | 1765.4 | 1206.67 | |
182 | 1775.16 | 1213.33 | |
183 | 1784.91 | 1220 | |
184 | 1794.67 | 1226.67 | 31/11 |
185 | 1804.42 | 1233.33 | |
186 | 1814.17 | 1240 | 57/20 |
187 | 1823.93 | 1246.67 | 43/15, 66/23 |
188 | 1833.68 | 1253.33 | |
189 | 1843.43 | 1260 | 29/10 |
190 | 1853.19 | 1266.67 | 35/12 |
191 | 1862.94 | 1273.33 | 44/15 |
192 | 1872.69 | 1280 | |
193 | 1882.45 | 1286.67 | |
194 | 1892.2 | 1293.33 | |
195 | 1901.96 | 1300 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -0.31 | +0.00 | -0.61 | +3.22 | -0.31 | -3.83 | -0.92 | +0.00 | +2.91 | +3.72 | -0.61 |
Relative (%) | -3.1 | +0.0 | -6.3 | +33.0 | -3.1 | -39.3 | -9.4 | +0.0 | +29.9 | +38.2 | -6.3 | |
Steps (reduced) |
123 (123) |
195 (0) |
246 (51) |
286 (91) |
318 (123) |
345 (150) |
369 (174) |
390 (0) |
409 (19) |
426 (36) |
441 (51) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -2.63 | -4.13 | +3.22 | -1.22 | +1.11 | -0.31 | +3.63 | +2.61 | -3.83 | +3.42 | +4.49 |
Relative (%) | -27.0 | -42.4 | +33.0 | -12.5 | +11.4 | -3.1 | +37.2 | +26.8 | -39.3 | +35.0 | +46.0 | |
Steps (reduced) |
455 (65) |
468 (78) |
481 (91) |
492 (102) |
503 (113) |
513 (123) |
523 (133) |
532 (142) |
540 (150) |
549 (159) |
557 (167) |