589edo

Revision as of 20:30, 30 September 2023 by Francium (talk | contribs) (Created page with "{{Infobox ET}} {{EDO intro|589}} == Theory == 589et tempers out 420175/419904 in the 7-limit; 55296000/55240493, 117649/117612, 107495424/107421875, 1953125/1948617, 43025...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
← 588edo 589edo 590edo →
Prime factorization 19 × 31
Step size 2.03735 ¢ 
Fifth 345\589 (702.886 ¢)
Semitones (A1:m2) 59:42 (120.2 ¢ : 85.57 ¢)
Dual sharp fifth 345\589 (702.886 ¢)
Dual flat fifth 344\589 (700.849 ¢)
Dual major 2nd 100\589 (203.735 ¢)
Consistency limit 7
Distinct consistency limit 7

Template:EDO intro

Theory

589et tempers out 420175/419904 in the 7-limit; 55296000/55240493, 117649/117612, 107495424/107421875, 1953125/1948617, 4302592/4296875, 85937500/85766121, 422576/421875, 3025/3024, 766656/765625, 456533/455625, 3294225/3294172, 644204/643125 and 781258401/781250000 in the 11-limit.

Odd harmonics

Approximation of odd harmonics in 589edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) +0.931 +0.783 +0.953 -0.175 +0.804 +0.898 -0.323 +0.987 -0.060 -0.153 -0.770
Relative (%) +45.7 +38.4 +46.8 -8.6 +39.5 +44.1 -15.9 +48.4 -2.9 -7.5 -37.8
Steps
(reduced)
934
(345)
1368
(190)
1654
(476)
1867
(100)
2038
(271)
2180
(413)
2301
(534)
2408
(52)
2502
(146)
2587
(231)
2664
(308)

Subsets and supersets

589 factors into 19 × 31 with subset edos 19, and 31. 1178edo, which doubles it, gives a good correction to the 3rd harmonic.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.9 [-1867 589 589 1867] +0.0276 0.0276 1.35
2.9.5 [-37 19 -10, [72 0 -31 589 1867 1368] -0.0940 0.1734 8.51

Scales