1643edo

From Xenharmonic Wiki
Jump to navigation Jump to search
This page presents a novelty topic.

It may contain ideas which are less likely to find practical applications in music, or numbers or structures that are arbitrary or exceedingly small, large, or complex.

Novelty topics are often developed by a single person or a small group. As such, this page may also contain idiosyncratic terms, notation, or conceptual frameworks.

This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 1642edo 1643edo 1644edo →
Prime factorization 31 × 53
Step size 0.730371 ¢ 
Fifth 961\1643 (701.887 ¢) (→ 31\53)
Semitones (A1:m2) 155:124 (113.2 ¢ : 90.57 ¢)
Consistency limit 5
Distinct consistency limit 5

Template:EDO intro

Theory

1643edo is the multiple of two very famous EDOs: 31edo and 53edo.

The best subgroup for it is the 2.3.5.11.13 subgroup. Nonetheless, it provides the optimal patent val for the 13-limit version of iodine temperament, which tempers out the Mercator's comma and has a basis 6656/6655, 34398/34375, 43904/43875, 59535/59488.


Approximation of odd harmonics in 1643edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) -0.068 +0.053 -0.354 -0.136 +0.112 +0.130 -0.016 +0.218 -0.252 +0.309 -0.155
Relative (%) -9.3 +7.2 -48.4 -18.7 +15.4 +17.8 -2.1 +29.9 -34.5 +42.2 -21.2
Steps
(reduced)
2604
(961)
3815
(529)
4612
(1326)
5208
(279)
5684
(755)
6080
(1151)
6419
(1490)
6716
(144)
6979
(407)
7217
(645)
7432
(860)