Jubilismic family
The jubilismic family contains temperaments that temper out the jubilisma (50/49) (also called tritonic diesis, or septimal sixth-tone). It therefore identifies the two septimal tritones 7/5 and 10/7, an identification familiar from 12edo. While most rank-three temperaments are planar, a jubilismic temperament divides the octave in two.
Jubilismic
Period: 1\2
Optimal (POTE) generators: ~3/2 = 702.9804, ~5/4 = 380.8399
EDO generators: (2, 1)\4, (6, 3)\10, (7, 4)\12
Scales: jubilismic10, jubilismic12
Subgroup: 2.3.5.7
Comma list: 50/49
- 7- and 9-odd-limit
- [[1 0 0 0⟩, [0 1 0 0⟩, [-1/4 0 1/2 1/2⟩, [1/4 0 1/2 1/2⟩]
- Eigenmonzos: 2, 3/2, 35/32
Mapping: [⟨2 0 0 1], ⟨0 1 0 0], ⟨0 0 1 1]]
Mapping generators: ~7/5, ~3, ~5
Jubilee
Period: 1\2
Optimal (POTE) generators: ~3/2 = 703.4155, ~5/4 = 380.6973
EDO generators: (5, 3)\8, (7, 4)\12, (8, 4)\14
Scales:
Subgroup: 2.3.5.7.11
Comma list: 50/49, 99/98
Mapping: [⟨2 0 0 1 4], ⟨0 1 0 0 -2], ⟨0 0 1 1 2]]
Badness: 0.600 × 10-3
Festival
Period: 1\2
Optimal (POTE) generators: ~3/2 = 693.6257, ~5/4 = 371.2658
EDO generators: (6, 3)\10, (7, 4)\12, (8, 4)\14
Scales:
Subgroup: 2.3.5.7.11
Comma list: 45/44, 50/49
Mapping: [⟨2 0 0 1 -4], ⟨0 1 0 0 2], ⟨0 0 1 1 1]]
Badness: 0.689 × 10-3
Fiesta
Period: 1\2
Optimal (POTE) generators: ~3/2 = 713.5853, ~5/4 = 397.6952
EDO generators: (5, 3)\8, (6, 3)\10, (7, 4)\12
Scales:
Subgroup: 2.3.5.7.11
Comma list: 50/49, 56/55
Mapping: [⟨2 0 0 1 7], ⟨0 1 0 0 0], ⟨0 0 1 1 0]]
Badness: 0.717 × 10-3
Jamboree
Period: 1\2
Optimal (POTE) generators: ~3/2 = 706.6559, ~5/4 = 376.8308
EDO generators: (5, 3)\8, (6, 3)\10, (8, 4)\14
Scales:
Subgroup: 2.3.5.7.11
Comma list: 50/49, 55/54
Mapping: [⟨2 0 0 1 2], ⟨0 1 0 0 3], ⟨0 0 1 1 -1]]
Badness: 0.781 × 10-3