87edo

Revision as of 13:38, 5 May 2020 by Jdfreivald (talk | contribs) (Put into table form.)

The 87 equal temperament, often abbreviated 87-tET, 87-EDO, or 87-ET, is the scale derived by dividing the octave into 87 equally-sized steps, where each step represents a frequency ratio of 13.79 cents. It is solid as both a 13-limit (or 15 odd limit) and as a 5-limit system, and of course does well enough in any limit in between. It represents the 13-limit tonality diamond both uniquely and consistently, and is the smallest equal temperament to do so.

87et tempers out 196/195, 325/324, 352/351, 364/363, 385/384, 441/440, 625/624, 676/675, and 1001/1000 as well as the 29-comma, <46 -29|, the misty comma, <26 -12 -3|, the kleisma, 15625/15552, 245/243, 1029/1024, 3136/3125, and 5120/5103.

87et is a particularly good tuning for rodan temperament. The 8/7 generator of 17\87 is a remarkable 0.00062 cents sharper than the 13-limit POTE generator and is close to the 11-limit POTE generator also. Also, the 32\87 generator for clyde temperament is 0.04455 cents sharp of the 7-limit POTE generator.

Rank two temperaments

Periods

per

octave

Generator Cents Associated

ratio

Temperament
1 4\87 55.172 33/32 Sensa
1 10\87 137.931 13/12 Quartemka
1 14\87 193.103 28/25 Luna/hemithirds
1 17\87 234.483 8/7 Rodan
1 23\87 317.241 6/5 Hanson/countercata/metakleismic
1 32\87 441.379 9/7 Clyde
1 38\87 524.138 65/48 Widefourth
1 40\87 551.724 11/8 Emkay
3 23\87 317.241 6/5 Tritikleismic
29 28\87 386.207 5/4 Mystery

87 can serve as a MOS in these:

270&87 <<24 -9 -66 12 27 ... ||

494&87 <<51 -1 -133 11 32 ... ||

13-limit detempering of 87et

See detempering.

[91/90, 49/48, 40/39, 28/27, 25/24, 21/20, 35/33, 16/15, 14/13, 13/12, 12/11, 11/10, 10/9, 28/25, 9/8, 25/22, 8/7, 15/13, 7/6, 75/64, 13/11, 25/21, 6/5, 40/33, 11/9, 16/13, 26/21, 5/4, 44/35, 14/11, 32/25, 9/7, 13/10, 21/16, 33/25, 4/3, 35/26, 27/20, 15/11, 11/8, 18/13, 7/5, 45/32, 64/45, 10/7, 13/9, 16/11, 22/15, 40/27, 52/35, 3/2, 50/33, 32/21, 20/13, 14/9, 25/16, 11/7, 35/22, 8/5, 21/13, 13/8, 18/11, 33/20, 5/3, 42/25, 22/13, 75/44, 12/7, 26/15, 7/4, 44/25, 16/9, 25/14, 9/5, 20/11, 11/6, 24/13, 13/7, 15/8, 66/35, 21/11, 25/13, 27/14, 39/20, 55/28, 99/50, 2]

Steps of 87 Cents Detempered Interval
1 13.79310 91/90
2 27.58621 49/48
3 41.37931 40/39
4 55.17241 28/27
5 68.96552 25/24
6 82.75862 21/20
7 96.55172 35/33
8 110.34483 16/15
9 124.13793 14/13
10 137.93103 13/12
11 151.72414 12/11
12 165.51724 11/10
13 179.31035 10/9
14 193.10345 28/25
15 206.89655 9/8
16 220.68966 25/22
17 234.48276 8/7
18 248.27586 15/13
19 262.06897 7/6
20 275.86207 75/64
21 289.65517 13/11
22 303.44828 25/21
23 317.24138 6/5
24 331.03448 40/33
25 344.82759 11/9
26 358.62069 16/13
27 372.41379 26/21
28 386.20690 5/4
29 400.00000 44/35
30 413.79310 14/11
31 427.58621 32/25
32 441.37931 9/7
33 455.17241 13/10
34 468.96552 21/16
35 482.75862 33/25
36 496.55172 4/3
37 510.34483 35/26
38 524.13793 27/20
39 537.93103 15/11
40 551.72414 11/8
41 565.51724 18/13
42 579.31035 7/5
43 593.10345 45/32
44 606.89655 64/45
45 620.68966 10/7
46 634.48276 13/9
47 648.27586 16/11
48 662.06897 22/15
49 675.86207 40/27
50 689.65517 52/35
51 703.44828 3/2
52 717.24138 50/33
53 731.03448 32/21
54 744.82759 20/13
55 758.62069 14/9
56 772.41379 25/16
57 786.20690 11/7
58 800.00000 35/22
59 813.79310 8/5
60 827.58621 21/13
61 841.37931 13/8
62 855.17241 18/11
63 868.96552 33/20
64 882.75862 5/3
65 896.55172 42/25
66 910.34483 22/13
67 924.13793 75/44
68 937.93103 12/7
69 951.72414 26/15
70 965.51724 7/4
71 979.31035 44/25
72 993.10345 16/9
73 1006.89655 25/14
74 1020.68966 9/5
75 1034.48276 20/11
76 1048.27586 11/6
77 1062.06897 24/13
78 1075.86207 13/7
79 1089.65517 15/8
80 1103.44828 66/35
81 1117.24138 21/11
82 1131.03448 25/13
83 1144.82759 27/14
84 1158.62069 39/20
85 1172.41379 55/28
86 1186.20690 99/50
87 1200.00000 2/1

Music

Pianodactyl play by Gene Ward Smith