The tetrahanson temperament is a nonoctave kleismic temperament, tempering out the kleisma in the 4.3.5 subgroup and repeating at the double octave 4/1. It is generated by 5/3 and, like in normal hanson temperament, 6 of them make a 4/3. Tetrahanson does not contain any 5-limit major or minor triads, but it does have different voicings of them (3:4:5 and 12:15:20), which, to a 12edo-accustomed listener, can make it sound like the root is the real root and the perfect fifth above it at the same time.

For technical information see Subgroup temperaments#Tetrahanson.

Interval chain

Generators Cents (CTE) Approximate ratios
-7 1019.413 9/5
-6 1902.354 3/1
-5 385.295 5/4
-4 1268.236 25/12
-3 2151.177 125/36
-2 634.118 36/25
-1 1517.059 12/5
0 0.000 1/1
1 882.941 5/3
2 1765.882 25/9
3 248.823 144/125
4 1131.764 48/25
5 2014.705 16/5
6 497.646 4/3
7 1380.587 20/9

Tetrahanson on tritave

In tritave-repeating tetrahanson (3.4.5 subgroup), 36/25 actually represents 1\3edt, which makes the 3rd-tritave period.

b39 & b15

This is restriction of catalan extension. This can maintain the structure of the 3rd-octave period in 3.4.5, 3.5.11, and 3.5.13. The tuning results are clearly affected by whether or not the basis includes 11.

3.4.5 3.5.11 3.5.13
CWE 883.071 879.416 883.808
Badness (Dirichlet) 0.155 2.708 0.069
3.4.5.11 3.4.5.13 3.5.11.13
CWE 880.672 882.854 879.352
Badness (Dirichlet) 0.384 0.066 0.44
#
(mingen)
Period 0 Period 1 Period 2
Cents* Approximate Ratios Cents* Approximate Ratios Cents* Approximate Ratios
-1 1652.9 13/5 384.9 5/4 1018.9 9/5
0 0.0 1/1 634.0 36/25, 13/9 1268.0 25/12, 27/13
1 249.1 125/108, 15/13 883.1 5/3 1517.1 12/5
2 498.2 4/3, 33/25 1132.2 48/25, 25/13 1766.1 25/9, 36/13, 11/4
3 747.3 20/13, 55/36 1381.2 20/9, 11/5 113.3 16/15, 55/52
4 996.3 16/9, 44/25 1630.3 64/25,33/13 362.4 100/81, 16/13, 11/9

* In 3.4.5-subgroup CWE tuning