Prime factorization
2 × 29
Step size
12.1027 ¢
Octave
99\58edf (1198.16 ¢)
Twelfth
157\58edf (1900.12 ¢)
Consistency limit
12
Distinct consistency limit
12
Division of the just perfect fifth into 58 equal parts (58EDF) is related to 99edo , but with the 3/2 rather than the 2/1 being just. The octave is about 1.8354 cents compressed and the step size is about 12.1027 cents (corresponding to 99.1517 edo). It is consistent to the 12-integer-limit . In comparison, 99edo is only consistent up to the 10-integer-limit .
Intervals
Todo: complete table
The mapping for 11 and 13 should differ from 99edo .
Degrees
Cents Value
Five limit
Seven limit
Eleven limit
Thirteen limit
1
12.1027
2048/2025
126/125
99/98
91/90
2
24.2053
81/80
64/63
55/54
3
36.308
128/125
49/48
4
48.4107
250/243
36/35
33/32
5
60.5134
648/625
28/27
26/25
6
72.616
25/24
22/21
7
84.7187
256/243
21/20
8
96.8214
135/128
81/77
52/49
9
108.92405
16/15
10
121.0267
2187/2048
15/14
11
133.1294
27/25
13/12
12
145.2321
625/576
49/45
13
157.3347
800/729
35/32
11/10
14
169.4374
1125/1024
54/49
15
181.54
10/9
10/9
16
193.6428
4096/3645
28/25
17
205.7454
9/8
18
217.8481
256/225
245/216
112/99
91/80
19
229.9508
729/640
8/7
20
242.05345
144/125
63/55
52/45
21
254.1561
125/108
81/70
15/13
22
266.2587
729/625
7/6
23
278.3615
75/64
33/28
24
290.4641
32/27
32/27
13/11
25
302.5668
1215/1024
25/21
26
314.6695
6/5
27
326.7722
3125/2592
98/81
91/75
28
338.8748
243/200
128/105
11/9
29
350.9775
625/512
49/40
30
363.0802
100/81
27/22
16/13
31
375.18285
3888/3125
56/45
32
387.2855
5/4
33
399.3882
512/405
63/50
49/39
34
411.4909
81/64
80/63
33/26
35
423.5935
32/25
14/11
36
435.6962
625/486
9/7
37
447.7989
162/125
35/27
13/10
38
459.90155
125/96
64/49
55/42
39
472.0042
320/243
21/16
40
484.1069
675/512
250/189
65/49
41
469.2096
4/3
42
508.3122
8192/6075
75/56
66/49
43
520.4149
27/20
44
532.5176
512/375
49/36
45
544.6203
1000/729
48/35
11/8
46
556.7229
864/625
112/81
91/66
47
568.8256
25/18
18/13
48
580.9283
1024/729
7/5
49
593.03095
45/32
50
605.1336
64/45
51
617.2362
729/512
10/7
52
629.339
36/25
13/9
53
641.4416
625/432
81/56
75/52
54
653.5443
729/500
35/24
16/11
55
665.647
375/256
72/49
56
677.7497
40/27
57
689.8523
6075/4096
112/75
49/33
58
701.955
3/2
59
714.0577
1024/675
189/125
91/60
60
726.16035
243/160
32/21
61
738.263
192/125
49/32
62
750.3657
125/81
54/35
20/13
63
762.4684
972/625
14/9
64
774.571
25/16
11/7
65
786.6737
128/81
63/40
52/33
66
798.7764
405/256
100/63
78/49
67
810.87905
8/5
68
822.9817
3125/1944
45/28
69
835.0844
81/50
44/27
13/8
70
847.1871
625/384
49/30
71
859.2897
400/243
105/64
18/11
72
871.3924
3375/2048
81/49
73
883.4951
5/3
74
895.5978
2048/1215
42/25
75
907.7004
27/16
22/13
76
919.8031
128/75
56/33
56/33
77
931.9058
1250/729
12/7
78
944.00845
216/125
140/81
26/15
79
956.1111
125/72
110/63
45/26
80
968.2138
1280/729
7/4
81
980.3165
225/128
225/128
99/56
82
992.4191
16/9
83
1004.5218
3645/2048
25/14
84
1016.6245
9/5
85
1028.7272
2048/1125
49/27
86
1040.8298
729/400
64/35
11/6
87
1052.9325
1152/625
90/49
88
1065.0352
50/27
89
1077.13785
4096/2187
28/15
90
1089.2405
15/8
91
1101.3432
256/135
189/100
154/81
49/26
92
1113.4459
243/128
40/21
93
1125.5485
48/25
94
1137.6512
625/324
27/14
25/13
95
1149.7539
243/125
35/18
35/18
96
1161.8566
125/64
49/25
49/25
97
1173.9592
160/81
63/32
98
1186.0619
2025/1024
125/63
99
1198.1646
2/1
100
1210.2672
4096/2025
252/125
99/49
91/45
101
1222.3699
81/40
128/63
55/27
102
1234.4726
256/125
49/24
103
1246.5753
500/243
72/35
33/16
104
1258.6779
1296/625
56/27
52/25
105
1270.7806
25/12
44/21
106
1282.8833
512/243
21/10
107
1294.98595
135/64
162/77
104/49
108
1307.0886
32/15
109
1319.1913
2187/1024
15/7
110
1331.294
54/25
13/6
111
1343.3966
625/288
98/45
112
1355.4993
1600/729
35/16
11/5
113
1367.602
1125/512
108/49
114
1379.7047
20/9
115
1391.8073
8192/3645
56/25
116
1403.91
9/4
See also