1955edo

Revision as of 14:00, 15 October 2023 by FloraC (talk | contribs) (Cleanup)
← 1954edo 1955edo 1956edo →
Prime factorization 5 × 17 × 23
Step size 0.613811 ¢ 
Fifth 1144\1955 (702.199 ¢)
Semitones (A1:m2) 188:145 (115.4 ¢ : 89 ¢)
Dual sharp fifth 1144\1955 (702.199 ¢)
Dual flat fifth 1143\1955 (701.586 ¢)
Dual major 2nd 332\1955 (203.785 ¢)
Consistency limit 3
Distinct consistency limit 3

Template:EDO intro

1955edo represents well the 2.9.11.15.17.21 subgroup, with a comma basis {43923/43904, 163863/163840, 334125/334084, 1285956/1285625, 1434818/1434375}.

In particular, 1955edo is an excellent 2.15.17.21 subgroup tuning with harmonics are represented to within 3% error, with the comma basis {2000033/2000000, 2.15.17.21 [80 -8 -13 1, and 2.15.17.21 [73 -15 4 -7}.

The 1955 & 6003 temperament in the 2.15.17.21 subgroup has only 0.000396 cents per octave of TE error. It is period-23 and has a comma basis {2000033/2000000, 2.5.17.21 [-101 -12 48 -11}.

Odd harmonics

Approximation of odd harmonics in 1955edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) +0.244 -0.227 -0.233 -0.125 -0.116 -0.221 +0.018 +0.006 +0.185 +0.012 +0.268
Relative (%) +39.8 -36.9 -37.9 -20.3 -18.9 -36.0 +2.9 +1.0 +30.2 +1.9 +43.6
Steps
(reduced)
3099
(1144)
4539
(629)
5488
(1578)
6197
(332)
6763
(898)
7234
(1369)
7638
(1773)
7991
(171)
8305
(485)
8587
(767)
8844
(1024)

Subsets and supersets

Since 1955 factors as 5 x 17 x 23, 1955edo has subsete edos 5, 17, 23, 85, 115, 391.