61edo

From Xenharmonic Wiki
Revision as of 04:58, 2 January 2012 by Wikispaces>Osmiorisbendi (**Imported revision 289036943 - Original comment: **)
Jump to navigation Jump to search

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author Osmiorisbendi and made on 2012-01-02 04:58:33 UTC.
The original revision id was 289036943.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

=<span style="color: #ffa610; font-family: 'Times New Roman',Times,serif; font-size: 122%;">**61 tone equal temperament**</span>= 
//61-EDO// refers to the equal division of [[xenharmonic/2_1|2/1]] ratio into 61 equal parts, of 19.6721 [[xenharmonic/cent|cent]]s each. It is the 18th [[prime numbers|prime]] EDO, after of [[59edo]] and before of [[67edo]].

=Poem= 
These 61 equal divisions of the octave,
though rare are assuredly a ROCK-tave (har har),
while the 3rd and 5th harmonics are about six cents sharp,
(and the flattish 15th poised differently on the harp),
the 7th and 11th err by less, around three,
and thus mayhap, a good orgone tuning found to be;
slightly sharp as well, is the 13th harmonic's place,
but the 9th and 17th are lacking much grace,
interestingly the 19th is good but a couple cents flat,
and the 21st and 23rd are but a cent or two sharp, alack!

You could make a lot of sandwiches with 61 cucumbers.

==**61-EDO Intervals**== 
|| **Degrees** || **Cent Value** ||
|| 0 || 0 ||
|| 1 || 19.6721 ||
|| 2 || 39.3443 ||
|| 3 || 59.0164 ||
|| 4 || 78.6885 ||
|| 5 || 98.3607 ||
|| 6 || 118.0328 ||
|| 7 || 137.7049 ||
|| 8 || 157.377 ||
|| 9 || 177.0492 ||
|| 10 || 196.7213 ||
|| 11 || 216.3934 ||
|| 12 || 236.0656 ||
|| 13 || 255.7377 ||
|| 14 || 275.4098 ||
|| 15 || 295.082 ||
|| 16 || 314.7541 ||
|| 17 || 334.4262 ||
|| 18 || 354.0984 ||
|| 19 || 373.7705 ||
|| 20 || 393.4426 ||
|| 21 || 413.1148 ||
|| 22 || 432.7869 ||
|| 23 || 452.459 ||
|| 24 || 472.1311 ||
|| 25 || 491.8033 ||
|| 26 || 511.4754 ||
|| 27 || 531.1475 ||
|| 28 || 550.8197 ||
|| 29 || 570.4918 ||
|| 30 || 590.1639 ||
|| 31 || 609.8361 ||
|| 32 || 629.5082 ||
|| 33 || 649.1803 ||
|| 34 || 668.8525 ||
|| 35 || 688.5246 ||
|| 36 || 708.1967 ||
|| 37 || 727.8689 ||
|| 38 || 747.541 ||
|| 39 || 767.2131 ||
|| 40 || 786.8852 ||
|| 41 || 806.5574 ||
|| 42 || 826.2295 ||
|| 43 || 845.9016 ||
|| 44 || 865.5738 ||
|| 45 || 885.2459 ||
|| 46 || 904.918 ||
|| 47 || 924.5902 ||
|| 48 || 944.2623 ||
|| 49 || 963.9344 ||
|| 50 || 983.6066 ||
|| 51 || 1003.2787 ||
|| 52 || 1022.9508 ||
|| 53 || 1042.623 ||
|| 54 || 1062.2951 ||
|| 55 || 1081.9672 ||
|| 56 || 1101.6393 ||
|| 57 || 1121.3115 ||
|| 58 || 1140.9836 ||
|| 59 || 1160.6557 ||
|| 60 || 1180.3279 ||

Original HTML content:

<html><head><title>61edo</title></head><body><!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="x61 tone equal temperament"></a><!-- ws:end:WikiTextHeadingRule:0 --><span style="color: #ffa610; font-family: 'Times New Roman',Times,serif; font-size: 122%;"><strong>61 tone equal temperament</strong></span></h1>
 <em>61-EDO</em> refers to the equal division of <a class="wiki_link" href="http://xenharmonic.wikispaces.com/2_1">2/1</a> ratio into 61 equal parts, of 19.6721 <a class="wiki_link" href="http://xenharmonic.wikispaces.com/cent">cent</a>s each. It is the 18th <a class="wiki_link" href="/prime%20numbers">prime</a> EDO, after of <a class="wiki_link" href="/59edo">59edo</a> and before of <a class="wiki_link" href="/67edo">67edo</a>.<br />
<br />
<!-- ws:start:WikiTextHeadingRule:2:&lt;h1&gt; --><h1 id="toc1"><a name="Poem"></a><!-- ws:end:WikiTextHeadingRule:2 -->Poem</h1>
 These 61 equal divisions of the octave,<br />
though rare are assuredly a ROCK-tave (har har),<br />
while the 3rd and 5th harmonics are about six cents sharp,<br />
(and the flattish 15th poised differently on the harp),<br />
the 7th and 11th err by less, around three,<br />
and thus mayhap, a good orgone tuning found to be;<br />
slightly sharp as well, is the 13th harmonic's place,<br />
but the 9th and 17th are lacking much grace,<br />
interestingly the 19th is good but a couple cents flat,<br />
and the 21st and 23rd are but a cent or two sharp, alack!<br />
<br />
You could make a lot of sandwiches with 61 cucumbers.<br />
<br />
<!-- ws:start:WikiTextHeadingRule:4:&lt;h2&gt; --><h2 id="toc2"><a name="Poem-61-EDO Intervals"></a><!-- ws:end:WikiTextHeadingRule:4 --><strong>61-EDO Intervals</strong></h2>
 

<table class="wiki_table">
    <tr>
        <td><strong>Degrees</strong><br />
</td>
        <td><strong>Cent Value</strong><br />
</td>
    </tr>
    <tr>
        <td>0<br />
</td>
        <td>0<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>19.6721<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>39.3443<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>59.0164<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>78.6885<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>98.3607<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td>118.0328<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td>137.7049<br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td>157.377<br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td>177.0492<br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td>196.7213<br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td>216.3934<br />
</td>
    </tr>
    <tr>
        <td>12<br />
</td>
        <td>236.0656<br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td>255.7377<br />
</td>
    </tr>
    <tr>
        <td>14<br />
</td>
        <td>275.4098<br />
</td>
    </tr>
    <tr>
        <td>15<br />
</td>
        <td>295.082<br />
</td>
    </tr>
    <tr>
        <td>16<br />
</td>
        <td>314.7541<br />
</td>
    </tr>
    <tr>
        <td>17<br />
</td>
        <td>334.4262<br />
</td>
    </tr>
    <tr>
        <td>18<br />
</td>
        <td>354.0984<br />
</td>
    </tr>
    <tr>
        <td>19<br />
</td>
        <td>373.7705<br />
</td>
    </tr>
    <tr>
        <td>20<br />
</td>
        <td>393.4426<br />
</td>
    </tr>
    <tr>
        <td>21<br />
</td>
        <td>413.1148<br />
</td>
    </tr>
    <tr>
        <td>22<br />
</td>
        <td>432.7869<br />
</td>
    </tr>
    <tr>
        <td>23<br />
</td>
        <td>452.459<br />
</td>
    </tr>
    <tr>
        <td>24<br />
</td>
        <td>472.1311<br />
</td>
    </tr>
    <tr>
        <td>25<br />
</td>
        <td>491.8033<br />
</td>
    </tr>
    <tr>
        <td>26<br />
</td>
        <td>511.4754<br />
</td>
    </tr>
    <tr>
        <td>27<br />
</td>
        <td>531.1475<br />
</td>
    </tr>
    <tr>
        <td>28<br />
</td>
        <td>550.8197<br />
</td>
    </tr>
    <tr>
        <td>29<br />
</td>
        <td>570.4918<br />
</td>
    </tr>
    <tr>
        <td>30<br />
</td>
        <td>590.1639<br />
</td>
    </tr>
    <tr>
        <td>31<br />
</td>
        <td>609.8361<br />
</td>
    </tr>
    <tr>
        <td>32<br />
</td>
        <td>629.5082<br />
</td>
    </tr>
    <tr>
        <td>33<br />
</td>
        <td>649.1803<br />
</td>
    </tr>
    <tr>
        <td>34<br />
</td>
        <td>668.8525<br />
</td>
    </tr>
    <tr>
        <td>35<br />
</td>
        <td>688.5246<br />
</td>
    </tr>
    <tr>
        <td>36<br />
</td>
        <td>708.1967<br />
</td>
    </tr>
    <tr>
        <td>37<br />
</td>
        <td>727.8689<br />
</td>
    </tr>
    <tr>
        <td>38<br />
</td>
        <td>747.541<br />
</td>
    </tr>
    <tr>
        <td>39<br />
</td>
        <td>767.2131<br />
</td>
    </tr>
    <tr>
        <td>40<br />
</td>
        <td>786.8852<br />
</td>
    </tr>
    <tr>
        <td>41<br />
</td>
        <td>806.5574<br />
</td>
    </tr>
    <tr>
        <td>42<br />
</td>
        <td>826.2295<br />
</td>
    </tr>
    <tr>
        <td>43<br />
</td>
        <td>845.9016<br />
</td>
    </tr>
    <tr>
        <td>44<br />
</td>
        <td>865.5738<br />
</td>
    </tr>
    <tr>
        <td>45<br />
</td>
        <td>885.2459<br />
</td>
    </tr>
    <tr>
        <td>46<br />
</td>
        <td>904.918<br />
</td>
    </tr>
    <tr>
        <td>47<br />
</td>
        <td>924.5902<br />
</td>
    </tr>
    <tr>
        <td>48<br />
</td>
        <td>944.2623<br />
</td>
    </tr>
    <tr>
        <td>49<br />
</td>
        <td>963.9344<br />
</td>
    </tr>
    <tr>
        <td>50<br />
</td>
        <td>983.6066<br />
</td>
    </tr>
    <tr>
        <td>51<br />
</td>
        <td>1003.2787<br />
</td>
    </tr>
    <tr>
        <td>52<br />
</td>
        <td>1022.9508<br />
</td>
    </tr>
    <tr>
        <td>53<br />
</td>
        <td>1042.623<br />
</td>
    </tr>
    <tr>
        <td>54<br />
</td>
        <td>1062.2951<br />
</td>
    </tr>
    <tr>
        <td>55<br />
</td>
        <td>1081.9672<br />
</td>
    </tr>
    <tr>
        <td>56<br />
</td>
        <td>1101.6393<br />
</td>
    </tr>
    <tr>
        <td>57<br />
</td>
        <td>1121.3115<br />
</td>
    </tr>
    <tr>
        <td>58<br />
</td>
        <td>1140.9836<br />
</td>
    </tr>
    <tr>
        <td>59<br />
</td>
        <td>1160.6557<br />
</td>
    </tr>
    <tr>
        <td>60<br />
</td>
        <td>1180.3279<br />
</td>
    </tr>
</table>

</body></html>