Lumatone mapping for 34edo

From Xenharmonic Wiki
Revision as of 18:41, 14 January 2022 by Keenan Pepper (talk | contribs) (add into and another mapping)
Jump to navigation Jump to search

34edo is an interesting case for Lumatone mappings, since (like 24edo), it is not generated by fifths and octaves, so the Standard Lumatone mapping for Pythagorean cannot be used.

A 5L 3s-based mapping for 34edo:

32
3
1
6
11
16
21
33
4
9
14
19
24
29
0
2
7
12
17
22
27
32
3
8
13
18
0
5
10
15
20
25
30
1
6
11
16
21
26
31
3
8
13
18
23
28
33
4
9
14
19
24
29
0
5
10
15
1
6
11
16
21
26
31
2
7
12
17
22
27
32
3
8
13
18
23
28
4
9
14
19
24
29
0
5
10
15
20
25
30
1
6
11
16
21
26
31
2
7
12
2
7
12
17
22
27
32
3
8
13
18
23
28
33
4
9
14
19
24
29
0
5
10
15
20
25
10
15
20
25
30
1
6
11
16
21
26
31
2
7
12
17
22
27
32
3
8
13
18
23
28
33
4
9
23
28
33
4
9
14
19
24
29
0
5
10
15
20
25
30
1
6
11
16
21
26
31
2
7
12
7
12
17
22
27
32
3
8
13
18
23
28
33
4
9
14
19
24
29
0
5
10
15
20
25
30
1
6
11
16
21
26
31
2
7
12
17
22
27
32
3
8
13
4
9
14
19
24
29
0
5
10
15
20
25
30
1
6
11
16
17
22
27
32
3
8
13
18
23
28
33
4
9
14
1
6
11
16
21
26
31
2
7
12
17
14
19
24
29
0
5
10
15
32
3
8
13
18
11
16

A 6L 1s-based mapping:

16
21
20
25
30
1
6
19
24
29
0
5
10
15
20
23
28
33
4
9
14
19
24
29
0
5
22
27
32
3
8
13
18
23
28
33
4
9
14
19
26
31
2
7
12
17
22
27
32
3
8
13
18
23
28
33
4
25
30
1
6
11
16
21
26
31
2
7
12
17
22
27
32
3
8
13
18
29
0
5
10
15
20
25
30
1
6
11
16
21
26
31
2
7
12
17
22
27
32
3
28
33
4
9
14
19
24
29
0
5
10
15
20
25
30
1
6
11
16
21
26
31
2
7
12
17
3
8
13
18
23
28
33
4
9
14
19
24
29
0
5
10
15
20
25
30
1
6
11
16
21
26
31
2
17
22
27
32
3
8
13
18
23
28
33
4
9
14
19
24
29
0
5
10
15
20
25
30
1
6
2
7
12
17
22
27
32
3
8
13
18
23
28
33
4
9
14
19
24
29
0
5
10
16
21
26
31
2
7
12
17
22
27
32
3
8
13
18
23
28
33
4
9
1
6
11
16
21
26
31
2
7
12
17
22
27
32
3
8
13
15
20
25
30
1
6
11
16
21
26
31
2
7
12
0
5
10
15
20
25
30
1
6
11
16
14
19
24
29
0
5
10
15
33
4
9
14
19
13
18