35edo

From Xenharmonic Wiki
Revision as of 11:49, 3 May 2012 by Wikispaces>guest (**Imported revision 329429794 - Original comment: **)
Jump to navigation Jump to search

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author guest and made on 2012-05-03 11:49:38 UTC.
The original revision id was 329429794.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

=<span style="color: #ff4100;">35 tone equal temperament</span>= 

35-tET or 35-[[xenharmonic/edo|EDO]], refers to a tuning system which divides the octave into 35 steps of approximately [[xenharmonic/cent|34.29¢]] each.

As 35 is 5 times 7, 35edo allows for mixing the two smallest xenharmonic [[xenharmonic/macrotonal edos|macrotonal edos]]: [[xenharmonic/5edo|5edo]] and [[xenharmonic/7edo|7edo]]. A single degree of 35edo represents the difference between 7edo's narrow fifth of 685.71¢ and 5edo's wide fifth of 720¢. 35edo can also represent the 2.3.5.7.11.17 [[xenharmonic/Just intonation subgroups|subgroup]] and 2.9.5.7.11.17 subgroup, because of the accuracy of 9 and the flatness of all other subgroup generators. Therefore among whitewood tunings it is very versatile, you can switch between these different subgroups if you don't mind having to use two different 3/2s to reach the inconsistent 9, and if you ignore [[22edo]]'s more consistent representation of both subgroups.
A good beggining for start to play 35-EDO is with the Sub-diatonic scale, that is a [[xenharmonic/MOS|MOS]] of 3L2s: 9 4 9 9 4.

==Intervals== 
|| Degrees of 35-EDO || Cents value || Ratios in 2.3.5.7.11.17 subgroup || Ratios in 2.9.5.7.11.17 subgroup ||
|| 0 || 0 || 1/1 || 1/1 ||
|| 1 || 34.29 ||   ||   ||
|| 2 || 68.57 ||   ||   ||
|| 3 || 102.86 || 17/16 || 17/16, 18/17 ||
|| 4 || 137.14 || 12/11 ||   ||
|| 5 || 171.43 || 11/10 || 10/9, 11/10 ||
|| 6 || 205.71 ||   || 9/8 ||
|| 7 || 240 || 8/7 || 8/7 ||
|| 8 || 274.29 || 7/6, 20/17 || 20/17 ||
|| 9 || 308.57 || 6/5 ||   ||
|| 10 || 342.86 || 17/14 || 11/9, 17/14 ||
|| 11 || 377.14 || 5/4 || 5/4 ||
|| 12 || 411.43 || 14/11 || 14/11 ||
|| 13 || 445.71 || 22/17 || 9/7, 22/17 ||
|| 14 || 480 ||   ||   ||
|| 15 || 514.29 || 4/3 ||   ||
|| 16 || 548.57 || 11/8 || 11/8 ||
|| 17 || 582.86 || 7/5, 24/17 || 7/8 ||
|| 18 || 617.14 || 10/7, 17/12 || 10/7 ||
|| 19 || 651.43 || 16/11 || 16/11 ||
|| 20 || 685.71 || 3/2 ||   ||
|| 21 || 720 ||   ||   ||
|| 22 || 754.29 || 17/11 || 14/9, 17/11 ||
|| 23 || 788.57 || 11/7 || 11/7 ||
|| 24 || 822.86 || 8/5 || 8/5 ||
|| 25 || 857.15 ||   || 18/11 ||
|| 26 || 891.43 || 5/3 ||   ||
|| 27 || 925.71 || 12/7, 17/10 || 17/10 ||
|| 28 || 960 || 7/4 || 7/4 ||
|| 29 || 994.29 ||   || 16/9 ||
|| 30 || 1028.57 || 20/11 || 20/11, 9/5 ||
|| 31 || 1062.86 || 11/6 ||   ||
|| 32 || 1097.14 || 32/17 || 32/17, 17/9 ||
|| 33 || 1131.43 ||   ||   ||
|| 34 || 1165.71 ||   ||   ||

Original HTML content:

<html><head><title>35edo</title></head><body><!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="x35 tone equal temperament"></a><!-- ws:end:WikiTextHeadingRule:0 --><span style="color: #ff4100;">35 tone equal temperament</span></h1>
 <br />
35-tET or 35-<a class="wiki_link" href="http://xenharmonic.wikispaces.com/edo">EDO</a>, refers to a tuning system which divides the octave into 35 steps of approximately <a class="wiki_link" href="http://xenharmonic.wikispaces.com/cent">34.29¢</a> each.<br />
<br />
As 35 is 5 times 7, 35edo allows for mixing the two smallest xenharmonic <a class="wiki_link" href="http://xenharmonic.wikispaces.com/macrotonal%20edos">macrotonal edos</a>: <a class="wiki_link" href="http://xenharmonic.wikispaces.com/5edo">5edo</a> and <a class="wiki_link" href="http://xenharmonic.wikispaces.com/7edo">7edo</a>. A single degree of 35edo represents the difference between 7edo's narrow fifth of 685.71¢ and 5edo's wide fifth of 720¢. 35edo can also represent the 2.3.5.7.11.17 <a class="wiki_link" href="http://xenharmonic.wikispaces.com/Just%20intonation%20subgroups">subgroup</a> and 2.9.5.7.11.17 subgroup, because of the accuracy of 9 and the flatness of all other subgroup generators. Therefore among whitewood tunings it is very versatile, you can switch between these different subgroups if you don't mind having to use two different 3/2s to reach the inconsistent 9, and if you ignore <a class="wiki_link" href="/22edo">22edo</a>'s more consistent representation of both subgroups.<br />
A good beggining for start to play 35-EDO is with the Sub-diatonic scale, that is a <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOS">MOS</a> of 3L2s: 9 4 9 9 4.<br />
<br />
<!-- ws:start:WikiTextHeadingRule:2:&lt;h2&gt; --><h2 id="toc1"><a name="x35 tone equal temperament-Intervals"></a><!-- ws:end:WikiTextHeadingRule:2 -->Intervals</h2>
 

<table class="wiki_table">
    <tr>
        <td>Degrees of 35-EDO<br />
</td>
        <td>Cents value<br />
</td>
        <td>Ratios in 2.3.5.7.11.17 subgroup<br />
</td>
        <td>Ratios in 2.9.5.7.11.17 subgroup<br />
</td>
    </tr>
    <tr>
        <td>0<br />
</td>
        <td>0<br />
</td>
        <td>1/1<br />
</td>
        <td>1/1<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>34.29<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>68.57<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>102.86<br />
</td>
        <td>17/16<br />
</td>
        <td>17/16, 18/17<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>137.14<br />
</td>
        <td>12/11<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>171.43<br />
</td>
        <td>11/10<br />
</td>
        <td>10/9, 11/10<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td>205.71<br />
</td>
        <td><br />
</td>
        <td>9/8<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td>240<br />
</td>
        <td>8/7<br />
</td>
        <td>8/7<br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td>274.29<br />
</td>
        <td>7/6, 20/17<br />
</td>
        <td>20/17<br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td>308.57<br />
</td>
        <td>6/5<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td>342.86<br />
</td>
        <td>17/14<br />
</td>
        <td>11/9, 17/14<br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td>377.14<br />
</td>
        <td>5/4<br />
</td>
        <td>5/4<br />
</td>
    </tr>
    <tr>
        <td>12<br />
</td>
        <td>411.43<br />
</td>
        <td>14/11<br />
</td>
        <td>14/11<br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td>445.71<br />
</td>
        <td>22/17<br />
</td>
        <td>9/7, 22/17<br />
</td>
    </tr>
    <tr>
        <td>14<br />
</td>
        <td>480<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>15<br />
</td>
        <td>514.29<br />
</td>
        <td>4/3<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>16<br />
</td>
        <td>548.57<br />
</td>
        <td>11/8<br />
</td>
        <td>11/8<br />
</td>
    </tr>
    <tr>
        <td>17<br />
</td>
        <td>582.86<br />
</td>
        <td>7/5, 24/17<br />
</td>
        <td>7/8<br />
</td>
    </tr>
    <tr>
        <td>18<br />
</td>
        <td>617.14<br />
</td>
        <td>10/7, 17/12<br />
</td>
        <td>10/7<br />
</td>
    </tr>
    <tr>
        <td>19<br />
</td>
        <td>651.43<br />
</td>
        <td>16/11<br />
</td>
        <td>16/11<br />
</td>
    </tr>
    <tr>
        <td>20<br />
</td>
        <td>685.71<br />
</td>
        <td>3/2<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>21<br />
</td>
        <td>720<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>22<br />
</td>
        <td>754.29<br />
</td>
        <td>17/11<br />
</td>
        <td>14/9, 17/11<br />
</td>
    </tr>
    <tr>
        <td>23<br />
</td>
        <td>788.57<br />
</td>
        <td>11/7<br />
</td>
        <td>11/7<br />
</td>
    </tr>
    <tr>
        <td>24<br />
</td>
        <td>822.86<br />
</td>
        <td>8/5<br />
</td>
        <td>8/5<br />
</td>
    </tr>
    <tr>
        <td>25<br />
</td>
        <td>857.15<br />
</td>
        <td><br />
</td>
        <td>18/11<br />
</td>
    </tr>
    <tr>
        <td>26<br />
</td>
        <td>891.43<br />
</td>
        <td>5/3<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>27<br />
</td>
        <td>925.71<br />
</td>
        <td>12/7, 17/10<br />
</td>
        <td>17/10<br />
</td>
    </tr>
    <tr>
        <td>28<br />
</td>
        <td>960<br />
</td>
        <td>7/4<br />
</td>
        <td>7/4<br />
</td>
    </tr>
    <tr>
        <td>29<br />
</td>
        <td>994.29<br />
</td>
        <td><br />
</td>
        <td>16/9<br />
</td>
    </tr>
    <tr>
        <td>30<br />
</td>
        <td>1028.57<br />
</td>
        <td>20/11<br />
</td>
        <td>20/11, 9/5<br />
</td>
    </tr>
    <tr>
        <td>31<br />
</td>
        <td>1062.86<br />
</td>
        <td>11/6<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>32<br />
</td>
        <td>1097.14<br />
</td>
        <td>32/17<br />
</td>
        <td>32/17, 17/9<br />
</td>
    </tr>
    <tr>
        <td>33<br />
</td>
        <td>1131.43<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>34<br />
</td>
        <td>1165.71<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
</table>

</body></html>