27edo
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author keenanpepper and made on 2011-08-14 22:55:01 UTC.
- The original revision id was 245955447.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
=<span style="color: #0061ff; font-size: 103%;">27 tone equal tempertament</span>= If octaves are kept pure, 27edo divides the [[octave]] in 27 equal parts each exactly 44.444... [[cent]]s in size. However, 27 is a prime candidate for [[octave shrinking]], and a step size of 44.3 to 44.35 cents would be reasonable. The reason for this is that 27edo tunes the [[5_4|third]], [[3_2|fifth]] and [[7_4|7/4]] sharply. Assuming however pure octaves, 27 has a fifth sharp by slightly more than nine cents and a 7/4 sharp by slightly less, and the same 400 cent major third as [[12edo]], sharp 13 2/3 cents. The result is that [[6_5|6/5]], [[7_5|7/5]] and especially [[7_6|7/6]] are all tuned more accurately than this. 27edo, with its 400 cent major third, tempers out the [[diesis]] of 128/125, and also the [[septimal comma]], 64/63 (and hence 126/125 also.) These it shares with 12edo, making some relationships familiar, and as a consequence they both support augene temperament. It shares with [[22edo]] tempering out the allegedly Bohlen-Pierce comma 245/243 as well as 64/63, so that they both support superpyth temperament, with quite sharp "superpythagorean" fifths giving a sharp 9/7 in place of meantone's 5/4. Though the [[7-limit]] tuning of 27edo is not highly accurate, it nonetheless is the smallest equal division to represent the 7 odd limit both [[consistent]]ly and distinctly--that is, everything in the 7-limit [[Diamonds|diamond]] is uniquely represented by a certain number of steps of 27 equal. It also represents the 13th harmonic very well, and performs quite decently as a 2.3.5.7.13 temperament ==Intervals== || Degrees of 27-EDO || Cents value ||= Approximate Ratios* || || 0 || 0 ||= 1/1 || || 1 || 44.44 ||= 36/35, 49/48, 50/49 || || 2 || 88.89 ||= 21/20 || || 3 || 133.33 ||= 14/13, 13/12 || || 4 || 177.78 ||= 10/9 || || 5 || 222.22 ||= 8/7, 9/8 || || 6 || 266.67 ||= 7/6 || || 7 || 311.11 ||= 6/5 || || 8 || 355.56 ||= 16/13 || || 9 || 400 ||= 5/4 || || 10 || 444.44 ||= 9/7, 13/10 || || 11 || 488.89 ||= 4/3 || || 12 || 533.33 ||= 49/36, 48/35 || || 13 || 577.78 ||= 7/5 || || 14 || 622.22 ||= 10/7 || || 15 || 666.67 ||= 72/49, 35/24 || || 16 || 711.11 ||= 3/2 || || 17 || 755.56 ||= 14/9, 20/13 || || 18 || 800 ||= 8/5 || || 19 || 844.44 ||= 13/8 || || 20 || 888.89 ||= 5/3 || || 21 || 933.33 ||= 12/7 || || 22 || 977.78 ||= 7/4, 16/9 || || 23 || 1022.22 ||= 9/5 || || 24 || 1066,67 ||= 13/7, 24/13 || || 25 || 1111.11 ||= 40/21 || || 26 || 1155.56 ||= 35/18, 96/49, 49/25 || || 27 || 1200 ||= 2/1 || *based on treating 27-EDO as a 2.3.5.7.13 subgroup temperament; other approaches are possible. ==Linear temperaments== ||~ Periods per octave ||~ Generator ||~ Temperaments || || 1 || 1\27 || [[Quartonic]] || || 1 || 2\27 || [[Octacot]] || || 1 || 4\27 || [[Tetracot]] || || 1 || 5\27 || || || 1 || 7\27 || [[Myna]] || || 1 || 8\27 || [[Beatles]] || || 1 || 10\27 || [[Sensi]] || || 1 || 11\27 || [[Superpyth]] || || 1 || 13\27 || || || 3 || 1\27 || [[Semiaug]] || || 3 || 2\27 || [[Augmented]]/[[augene]] || || 3 || 4\27 || || || 9 || 1\27 || Terrible version of [[Ennealimmal]] || ==Commas== 27 EDO tempers out the following commas. (Note: This assumes the val < 27 43 63 76 93 100 |.) ||~ Comma ||~ Monzo ||~ Value (Cents) ||~ Name 1 ||~ Name 2 ||~ Name 3 || ||= 128/125 ||< | 7 0 -3 > ||> 41.06 ||= Diesis ||= Augmented Comma ||= || ||= 20000/19683 ||< | 5 -9 4 > ||> 27.66 ||= Minimal Diesis ||= Tetracot Comma ||= || ||= 78732/78125 ||< | 2 9 -7 > ||> 13.40 ||= Medium Semicomma ||= Sensipent Comma ||= || ||= 4711802/4709457 ||< | 1 -27 18 > ||> 0.86 ||= Ennealimma ||= ||= || ||= 686/675 ||< | 1 -3 -2 3 > ||> 27.99 ||= Senga ||= ||= || ||= 64/63 ||< | 6 -2 0 -1 > ||> 27.26 ||= Septimal Comma ||= Archytas' Comma ||= Leipziger Komma || ||= 50421/50000 ||< | -4 1 -5 5 > ||> 14.52 ||= Trimyna ||= ||= || ||= 245/243 ||< | 0 -5 1 2 > ||> 14.19 ||= Sensamagic ||= ||= || ||= 126/125 ||< | 1 2 -3 1 > ||> 13.79 ||= Septimal Semicomma ||= Starling Comma ||= || ||= 4000/3969 ||< | 5 -4 3 -2 > ||> 13.47 ||= Octagar ||= ||= || ||= 1728/1715 ||< | 6 3 -1 -3 > ||> 13.07 ||= Orwellisma ||= Orwell Comma ||= || ||= 420175/419904 ||< | -6 -8 2 5 > ||> 1.12 ||= Wizma ||= ||= || ||= 2401/2400 ||< | -5 -1 -2 4 > ||> 0.72 ||= Breedsma ||= ||= || ||= 4375/4374 ||< | -1 -7 4 1 > ||> 0.40 ||= Ragisma ||= ||= || ||= 250047/250000 ||< | -4 6 -6 3 > ||> 0.33 ||= Landscape Comma ||= ||= || ||= 99/98 ||< | -1 2 0 -2 1 > ||> 17.58 ||= Mothwellsma ||= ||= || ||= 896/891 ||< | 7 -4 0 1 -1 > ||> 9.69 ||= Pentacircle ||= ||= || ||= 385/384 ||< | -7 -1 1 1 1 > ||> 4.50 ||= Keenanisma ||= ||= || ||= 91/90 ||< | -1 -2 -1 1 0 1 > ||> 19.13 ||= Superleap ||= ||= || =Music= [[http://www.archive.org/details/MusicForYourEars|Music For Your Ears]] [[http://www.archive.org/download/MusicForYourEars/musicfor.mp3|play]] by [[Gene Ward Smith]] The central portion is in 27edo, the rest in [[46edo]].
Original HTML content:
<html><head><title>27edo</title></head><body><!-- ws:start:WikiTextHeadingRule:0:<h1> --><h1 id="toc0"><a name="x27 tone equal tempertament"></a><!-- ws:end:WikiTextHeadingRule:0 --><span style="color: #0061ff; font-size: 103%;">27 tone equal tempertament</span></h1> <br /> If octaves are kept pure, 27edo divides the <a class="wiki_link" href="/octave">octave</a> in 27 equal parts each exactly 44.444... <a class="wiki_link" href="/cent">cent</a>s in size. However, 27 is a prime candidate for <a class="wiki_link" href="/octave%20shrinking">octave shrinking</a>, and a step size of 44.3 to 44.35 cents would be reasonable. The reason for this is that 27edo tunes the <a class="wiki_link" href="/5_4">third</a>, <a class="wiki_link" href="/3_2">fifth</a> and <a class="wiki_link" href="/7_4">7/4</a> sharply.<br /> <br /> Assuming however pure octaves, 27 has a fifth sharp by slightly more than nine cents and a 7/4 sharp by slightly less, and the same 400 cent major third as <a class="wiki_link" href="/12edo">12edo</a>, sharp 13 2/3 cents. The result is that <a class="wiki_link" href="/6_5">6/5</a>, <a class="wiki_link" href="/7_5">7/5</a> and especially <a class="wiki_link" href="/7_6">7/6</a> are all tuned more accurately than this.<br /> <br /> 27edo, with its 400 cent major third, tempers out the <a class="wiki_link" href="/diesis">diesis</a> of 128/125, and also the <a class="wiki_link" href="/septimal%20comma">septimal comma</a>, 64/63 (and hence 126/125 also.) These it shares with 12edo, making some relationships familiar, and as a consequence they both support augene temperament. It shares with <a class="wiki_link" href="/22edo">22edo</a> tempering out the allegedly Bohlen-Pierce comma 245/243 as well as 64/63, so that they both support superpyth temperament, with quite sharp "superpythagorean" fifths giving a sharp 9/7 in place of meantone's 5/4.<br /> <br /> Though the <a class="wiki_link" href="/7-limit">7-limit</a> tuning of 27edo is not highly accurate, it nonetheless is the smallest equal division to represent the 7 odd limit both <a class="wiki_link" href="/consistent">consistent</a>ly and distinctly--that is, everything in the 7-limit <a class="wiki_link" href="/Diamonds">diamond</a> is uniquely represented by a certain number of steps of 27 equal. It also represents the 13th harmonic very well, and performs quite decently as a 2.3.5.7.13 temperament<br /> <br /> <!-- ws:start:WikiTextHeadingRule:2:<h2> --><h2 id="toc1"><a name="x27 tone equal tempertament-Intervals"></a><!-- ws:end:WikiTextHeadingRule:2 -->Intervals</h2> <table class="wiki_table"> <tr> <td>Degrees of 27-EDO<br /> </td> <td>Cents value<br /> </td> <td style="text-align: center;">Approximate<br /> Ratios*<br /> </td> </tr> <tr> <td>0<br /> </td> <td>0<br /> </td> <td style="text-align: center;">1/1<br /> </td> </tr> <tr> <td>1<br /> </td> <td>44.44<br /> </td> <td style="text-align: center;">36/35, 49/48, 50/49<br /> </td> </tr> <tr> <td>2<br /> </td> <td>88.89<br /> </td> <td style="text-align: center;">21/20<br /> </td> </tr> <tr> <td>3<br /> </td> <td>133.33<br /> </td> <td style="text-align: center;">14/13, 13/12<br /> </td> </tr> <tr> <td>4<br /> </td> <td>177.78<br /> </td> <td style="text-align: center;">10/9<br /> </td> </tr> <tr> <td>5<br /> </td> <td>222.22<br /> </td> <td style="text-align: center;">8/7, 9/8<br /> </td> </tr> <tr> <td>6<br /> </td> <td>266.67<br /> </td> <td style="text-align: center;">7/6<br /> </td> </tr> <tr> <td>7<br /> </td> <td>311.11<br /> </td> <td style="text-align: center;">6/5<br /> </td> </tr> <tr> <td>8<br /> </td> <td>355.56<br /> </td> <td style="text-align: center;">16/13<br /> </td> </tr> <tr> <td>9<br /> </td> <td>400<br /> </td> <td style="text-align: center;">5/4<br /> </td> </tr> <tr> <td>10<br /> </td> <td>444.44<br /> </td> <td style="text-align: center;">9/7, 13/10<br /> </td> </tr> <tr> <td>11<br /> </td> <td>488.89<br /> </td> <td style="text-align: center;">4/3<br /> </td> </tr> <tr> <td>12<br /> </td> <td>533.33<br /> </td> <td style="text-align: center;">49/36, 48/35<br /> </td> </tr> <tr> <td>13<br /> </td> <td>577.78<br /> </td> <td style="text-align: center;">7/5<br /> </td> </tr> <tr> <td>14<br /> </td> <td>622.22<br /> </td> <td style="text-align: center;">10/7<br /> </td> </tr> <tr> <td>15<br /> </td> <td>666.67<br /> </td> <td style="text-align: center;">72/49, 35/24<br /> </td> </tr> <tr> <td>16<br /> </td> <td>711.11<br /> </td> <td style="text-align: center;">3/2<br /> </td> </tr> <tr> <td>17<br /> </td> <td>755.56<br /> </td> <td style="text-align: center;">14/9, 20/13<br /> </td> </tr> <tr> <td>18<br /> </td> <td>800<br /> </td> <td style="text-align: center;">8/5<br /> </td> </tr> <tr> <td>19<br /> </td> <td>844.44<br /> </td> <td style="text-align: center;">13/8<br /> </td> </tr> <tr> <td>20<br /> </td> <td>888.89<br /> </td> <td style="text-align: center;">5/3<br /> </td> </tr> <tr> <td>21<br /> </td> <td>933.33<br /> </td> <td style="text-align: center;">12/7<br /> </td> </tr> <tr> <td>22<br /> </td> <td>977.78<br /> </td> <td style="text-align: center;">7/4, 16/9<br /> </td> </tr> <tr> <td>23<br /> </td> <td>1022.22<br /> </td> <td style="text-align: center;">9/5<br /> </td> </tr> <tr> <td>24<br /> </td> <td>1066,67<br /> </td> <td style="text-align: center;">13/7, 24/13<br /> </td> </tr> <tr> <td>25<br /> </td> <td>1111.11<br /> </td> <td style="text-align: center;">40/21<br /> </td> </tr> <tr> <td>26<br /> </td> <td>1155.56<br /> </td> <td style="text-align: center;">35/18, 96/49, 49/25<br /> </td> </tr> <tr> <td>27<br /> </td> <td>1200<br /> </td> <td style="text-align: center;">2/1<br /> </td> </tr> </table> *based on treating 27-EDO as a 2.3.5.7.13 subgroup temperament; other approaches are possible.<br /> <!-- ws:start:WikiTextHeadingRule:4:<h2> --><h2 id="toc2"><a name="x27 tone equal tempertament-Linear temperaments"></a><!-- ws:end:WikiTextHeadingRule:4 -->Linear temperaments</h2> <table class="wiki_table"> <tr> <th>Periods<br /> per octave<br /> </th> <th>Generator<br /> </th> <th>Temperaments<br /> </th> </tr> <tr> <td>1<br /> </td> <td>1\27<br /> </td> <td><a class="wiki_link" href="/Quartonic">Quartonic</a><br /> </td> </tr> <tr> <td>1<br /> </td> <td>2\27<br /> </td> <td><a class="wiki_link" href="/Octacot">Octacot</a><br /> </td> </tr> <tr> <td>1<br /> </td> <td>4\27<br /> </td> <td><a class="wiki_link" href="/Tetracot">Tetracot</a><br /> </td> </tr> <tr> <td>1<br /> </td> <td>5\27<br /> </td> <td><br /> </td> </tr> <tr> <td>1<br /> </td> <td>7\27<br /> </td> <td><a class="wiki_link" href="/Myna">Myna</a><br /> </td> </tr> <tr> <td>1<br /> </td> <td>8\27<br /> </td> <td><a class="wiki_link" href="/Beatles">Beatles</a><br /> </td> </tr> <tr> <td>1<br /> </td> <td>10\27<br /> </td> <td><a class="wiki_link" href="/Sensi">Sensi</a><br /> </td> </tr> <tr> <td>1<br /> </td> <td>11\27<br /> </td> <td><a class="wiki_link" href="/Superpyth">Superpyth</a><br /> </td> </tr> <tr> <td>1<br /> </td> <td>13\27<br /> </td> <td><br /> </td> </tr> <tr> <td>3<br /> </td> <td>1\27<br /> </td> <td><a class="wiki_link" href="/Semiaug">Semiaug</a><br /> </td> </tr> <tr> <td>3<br /> </td> <td>2\27<br /> </td> <td><a class="wiki_link" href="/Augmented">Augmented</a>/<a class="wiki_link" href="/augene">augene</a><br /> </td> </tr> <tr> <td>3<br /> </td> <td>4\27<br /> </td> <td><br /> </td> </tr> <tr> <td>9<br /> </td> <td>1\27<br /> </td> <td>Terrible version of <a class="wiki_link" href="/Ennealimmal">Ennealimmal</a><br /> </td> </tr> </table> <!-- ws:start:WikiTextHeadingRule:6:<h2> --><h2 id="toc3"><a name="x27 tone equal tempertament-Commas"></a><!-- ws:end:WikiTextHeadingRule:6 -->Commas</h2> 27 EDO tempers out the following commas. (Note: This assumes the val < 27 43 63 76 93 100 |.)<br /> <table class="wiki_table"> <tr> <th>Comma<br /> </th> <th>Monzo<br /> </th> <th>Value (Cents)<br /> </th> <th>Name 1<br /> </th> <th>Name 2<br /> </th> <th>Name 3<br /> </th> </tr> <tr> <td style="text-align: center;">128/125<br /> </td> <td style="text-align: left;">| 7 0 -3 ><br /> </td> <td style="text-align: right;">41.06<br /> </td> <td style="text-align: center;">Diesis<br /> </td> <td style="text-align: center;">Augmented Comma<br /> </td> <td style="text-align: center;"><br /> </td> </tr> <tr> <td style="text-align: center;">20000/19683<br /> </td> <td style="text-align: left;">| 5 -9 4 ><br /> </td> <td style="text-align: right;">27.66<br /> </td> <td style="text-align: center;">Minimal Diesis<br /> </td> <td style="text-align: center;">Tetracot Comma<br /> </td> <td style="text-align: center;"><br /> </td> </tr> <tr> <td style="text-align: center;">78732/78125<br /> </td> <td style="text-align: left;">| 2 9 -7 ><br /> </td> <td style="text-align: right;">13.40<br /> </td> <td style="text-align: center;">Medium Semicomma<br /> </td> <td style="text-align: center;">Sensipent Comma<br /> </td> <td style="text-align: center;"><br /> </td> </tr> <tr> <td style="text-align: center;">4711802/4709457<br /> </td> <td style="text-align: left;">| 1 -27 18 ><br /> </td> <td style="text-align: right;">0.86<br /> </td> <td style="text-align: center;">Ennealimma<br /> </td> <td style="text-align: center;"><br /> </td> <td style="text-align: center;"><br /> </td> </tr> <tr> <td style="text-align: center;">686/675<br /> </td> <td style="text-align: left;">| 1 -3 -2 3 ><br /> </td> <td style="text-align: right;">27.99<br /> </td> <td style="text-align: center;">Senga<br /> </td> <td style="text-align: center;"><br /> </td> <td style="text-align: center;"><br /> </td> </tr> <tr> <td style="text-align: center;">64/63<br /> </td> <td style="text-align: left;">| 6 -2 0 -1 ><br /> </td> <td style="text-align: right;">27.26<br /> </td> <td style="text-align: center;">Septimal Comma<br /> </td> <td style="text-align: center;">Archytas' Comma<br /> </td> <td style="text-align: center;">Leipziger Komma<br /> </td> </tr> <tr> <td style="text-align: center;">50421/50000<br /> </td> <td style="text-align: left;">| -4 1 -5 5 ><br /> </td> <td style="text-align: right;">14.52<br /> </td> <td style="text-align: center;">Trimyna<br /> </td> <td style="text-align: center;"><br /> </td> <td style="text-align: center;"><br /> </td> </tr> <tr> <td style="text-align: center;">245/243<br /> </td> <td style="text-align: left;">| 0 -5 1 2 ><br /> </td> <td style="text-align: right;">14.19<br /> </td> <td style="text-align: center;">Sensamagic<br /> </td> <td style="text-align: center;"><br /> </td> <td style="text-align: center;"><br /> </td> </tr> <tr> <td style="text-align: center;">126/125<br /> </td> <td style="text-align: left;">| 1 2 -3 1 ><br /> </td> <td style="text-align: right;">13.79<br /> </td> <td style="text-align: center;">Septimal Semicomma<br /> </td> <td style="text-align: center;">Starling Comma<br /> </td> <td style="text-align: center;"><br /> </td> </tr> <tr> <td style="text-align: center;">4000/3969<br /> </td> <td style="text-align: left;">| 5 -4 3 -2 ><br /> </td> <td style="text-align: right;">13.47<br /> </td> <td style="text-align: center;">Octagar<br /> </td> <td style="text-align: center;"><br /> </td> <td style="text-align: center;"><br /> </td> </tr> <tr> <td style="text-align: center;">1728/1715<br /> </td> <td style="text-align: left;">| 6 3 -1 -3 ><br /> </td> <td style="text-align: right;">13.07<br /> </td> <td style="text-align: center;">Orwellisma<br /> </td> <td style="text-align: center;">Orwell Comma<br /> </td> <td style="text-align: center;"><br /> </td> </tr> <tr> <td style="text-align: center;">420175/419904<br /> </td> <td style="text-align: left;">| -6 -8 2 5 ><br /> </td> <td style="text-align: right;">1.12<br /> </td> <td style="text-align: center;">Wizma<br /> </td> <td style="text-align: center;"><br /> </td> <td style="text-align: center;"><br /> </td> </tr> <tr> <td style="text-align: center;">2401/2400<br /> </td> <td style="text-align: left;">| -5 -1 -2 4 ><br /> </td> <td style="text-align: right;">0.72<br /> </td> <td style="text-align: center;">Breedsma<br /> </td> <td style="text-align: center;"><br /> </td> <td style="text-align: center;"><br /> </td> </tr> <tr> <td style="text-align: center;">4375/4374<br /> </td> <td style="text-align: left;">| -1 -7 4 1 ><br /> </td> <td style="text-align: right;">0.40<br /> </td> <td style="text-align: center;">Ragisma<br /> </td> <td style="text-align: center;"><br /> </td> <td style="text-align: center;"><br /> </td> </tr> <tr> <td style="text-align: center;">250047/250000<br /> </td> <td style="text-align: left;">| -4 6 -6 3 ><br /> </td> <td style="text-align: right;">0.33<br /> </td> <td style="text-align: center;">Landscape Comma<br /> </td> <td style="text-align: center;"><br /> </td> <td style="text-align: center;"><br /> </td> </tr> <tr> <td style="text-align: center;">99/98<br /> </td> <td style="text-align: left;">| -1 2 0 -2 1 ><br /> </td> <td style="text-align: right;">17.58<br /> </td> <td style="text-align: center;">Mothwellsma<br /> </td> <td style="text-align: center;"><br /> </td> <td style="text-align: center;"><br /> </td> </tr> <tr> <td style="text-align: center;">896/891<br /> </td> <td style="text-align: left;">| 7 -4 0 1 -1 ><br /> </td> <td style="text-align: right;">9.69<br /> </td> <td style="text-align: center;">Pentacircle<br /> </td> <td style="text-align: center;"><br /> </td> <td style="text-align: center;"><br /> </td> </tr> <tr> <td style="text-align: center;">385/384<br /> </td> <td style="text-align: left;">| -7 -1 1 1 1 ><br /> </td> <td style="text-align: right;">4.50<br /> </td> <td style="text-align: center;">Keenanisma<br /> </td> <td style="text-align: center;"><br /> </td> <td style="text-align: center;"><br /> </td> </tr> <tr> <td style="text-align: center;">91/90<br /> </td> <td style="text-align: left;">| -1 -2 -1 1 0 1 ><br /> </td> <td style="text-align: right;">19.13<br /> </td> <td style="text-align: center;">Superleap<br /> </td> <td style="text-align: center;"><br /> </td> <td style="text-align: center;"><br /> </td> </tr> </table> <br /> <!-- ws:start:WikiTextHeadingRule:8:<h1> --><h1 id="toc4"><a name="Music"></a><!-- ws:end:WikiTextHeadingRule:8 -->Music</h1> <a class="wiki_link_ext" href="http://www.archive.org/details/MusicForYourEars" rel="nofollow">Music For Your Ears</a> <a class="wiki_link_ext" href="http://www.archive.org/download/MusicForYourEars/musicfor.mp3" rel="nofollow">play</a> by <a class="wiki_link" href="/Gene%20Ward%20Smith">Gene Ward Smith</a> The central portion is in 27edo, the rest in <a class="wiki_link" href="/46edo">46edo</a>.</body></html>