27edo

From Xenharmonic Wiki
Revision as of 16:23, 10 June 2012 by Wikispaces>phylingual (**Imported revision 344236424 - Original comment: **)
Jump to navigation Jump to search

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author phylingual and made on 2012-06-10 16:23:22 UTC.
The original revision id was 344236424.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

=<span style="color: #0061ff; font-size: 103%;">27 tone equal tempertament</span>= 

If octaves are kept pure, 27edo divides the [[octave]] in 27 equal parts each exactly 44.444... [[cent]]s in size. However, 27 is a prime candidate for [[octave shrinking]], and a step size of 44.3 to 44.35 cents would be reasonable. The reason for this is that 27edo tunes the [[5_4|third]], [[3_2|fifth]] and [[7_4|7/4]] sharply.

Assuming however pure octaves, 27 has a fifth sharp by slightly more than nine cents and a 7/4 sharp by slightly less, and the same 400 cent major third as [[12edo]], sharp 13 2/3 cents. The result is that [[6_5|6/5]], [[7_5|7/5]] and especially [[7_6|7/6]] are all tuned more accurately than this.

27edo, with its 400 cent major third, tempers out the [[diesis]] of 128/125, and also the [[septimal comma]], 64/63 (and hence 126/125 also.) These it shares with 12edo, making some relationships familiar, and as a consequence they both support augene temperament. It shares with [[22edo]] tempering out the allegedly Bohlen-Pierce comma 245/243 as well as 64/63, so that they both support superpyth temperament, with quite sharp "superpythagorean" fifths giving a sharp 9/7 in place of meantone's 5/4.

Though the [[7-limit]] tuning of 27edo is not highly accurate, it nonetheless is the smallest equal division to represent the 7 odd limit both [[consistent]]ly and distinctly--that is, everything in the 7-limit [[Diamonds|diamond]] is uniquely represented by a certain number of steps of 27 equal. It also represents the 13th harmonic very well, and performs quite decently as a 2.3.5.7.13 temperament

==Intervals== 
|| Degrees of 27-EDO || Cents value ||= Approximate
Ratios* ||= Solfege ||
|| 0 || 0 ||= 1/1 ||= do ||
|| 1 || 44.44 ||= 36/35, 49/48, 50/49 ||= di ||
|| 2 || 88.89 ||= 16/15, 21/20, 25/24 ||= ra ||
|| 3 || 133.33 ||= 14/13, 13/12 ||= ru ||
|| 4 || 177.78 ||= 10/9 ||= reh ||
|| 5 || 222.22 ||= 8/7, 9/8 ||= re ||
|| 6 || 266.67 ||= 7/6 ||= ma ||
|| 7 || 311.11 ||= 6/5 ||= me ||
|| 8 || 355.56 ||= 16/13 ||= mu ||
|| 9 || 400 ||= 5/4 ||= mi ||
|| 10 || 444.44 ||= 9/7, 13/10 ||= mo ||
|| 11 || 488.89 ||= 4/3 ||= fa ||
|| 12 || 533.33 ||= 49/36, 48/35 ||= fih ||
|| 13 || 577.78 ||= 7/5 ||= fi ||
|| 14 || 622.22 ||= 10/7 ||= se ||
|| 15 || 666.67 ||= 72/49, 35/24 ||= sih ||
|| 16 || 711.11 ||= 3/2 ||= so/sol ||
|| 17 || 755.56 ||= 14/9, 20/13 ||= lo ||
|| 18 || 800 ||= 8/5 ||= le ||
|| 19 || 844.44 ||= 13/8 ||= lu ||
|| 20 || 888.89 ||= 5/3 ||= la ||
|| 21 || 933.33 ||= 12/7 ||= li ||
|| 22 || 977.78 ||= 7/4, 16/9 ||= ta ||
|| 23 || 1022.22 ||= 9/5 ||= te ||
|| 24 || 1066,67 ||= 13/7, 24/13 ||= tu ||
|| 25 || 1111.11 ||= 40/21 ||= ti ||
|| 26 || 1155.56 ||= 35/18, 96/49, 49/25 ||= da ||
|| 27 || 1200 ||= 2/1 ||= do ||
*based on treating 27-EDO as a 2.3.5.7.13 subgroup temperament; other approaches are possible.
==Rank two temperaments== 
[[List of 27edo rank two temperaments by badness]]
[[List of edo-distinct 27e rank two temperaments]]
||~ Periods
per octave ||~ Generator ||~ Temperaments ||
|| 1 || 1\27 || [[Quartonic]]/Quarto ||
|| 1 || 2\27 || [[Octacot]]/Octocat ||
|| 1 || 4\27 || [[Tetracot]]/Modus/Wollemia ||
|| 1 || 5\27 || [[Machine]]/Kumonga ||
|| 1 || 7\27 || [[Myna]]/Coleto/Minah ||
|| 1 || 8\27 || [[Beatles]]/Ringo ||
|| 1 || 10\27 || [[Sensi]]/Sensis ||
|| 1 || 11\27 || [[Superpyth]] ||
|| 1 || 13\27 || Fervor ||
|| 3 || 1\27 || [[Semiaug]]/Hemiaug ||
|| 3 || 2\27 || [[Augmented]]/[[augene|Augene]]/Ogene ||
|| 3 || 4\27 || Oodako ||
|| 9 || 1\27 || Terrible version of [[Ennealimmal]]
/ Niner ||
==Commas== 
27 EDO tempers out the following commas. (Note: This assumes the val < 27 43 63 76 93 100 |.)
||~ Comma ||~ Monzo ||~ Value (Cents) ||~ Name 1 ||~ Name 2 ||~ Name 3 ||
||= 128/125 ||< | 7 0 -3 > ||> 41.06 ||= Diesis ||= Augmented Comma ||=   ||
||= 20000/19683 ||< | 5 -9 4 > ||> 27.66 ||= Minimal Diesis ||= Tetracot Comma ||=   ||
||= 78732/78125 ||< | 2 9 -7 > ||> 13.40 ||= Medium Semicomma ||= Sensipent Comma ||=   ||
||= 4711802/4709457 ||< | 1 -27 18 > ||> 0.86 ||= Ennealimma ||=   ||=   ||
||= 686/675 ||< | 1 -3 -2 3 > ||> 27.99 ||= Senga ||=   ||=   ||
||= 64/63 ||< | 6 -2 0 -1 > ||> 27.26 ||= Septimal Comma ||= Archytas' Comma ||= Leipziger Komma ||
||= 50421/50000 ||< | -4 1 -5 5 > ||> 14.52 ||= Trimyna ||=   ||=   ||
||= 245/243 ||< | 0 -5 1 2 > ||> 14.19 ||= Sensamagic ||=   ||=   ||
||= 126/125 ||< | 1 2 -3 1 > ||> 13.79 ||= Septimal Semicomma ||= Starling Comma ||=   ||
||= 4000/3969 ||< | 5 -4 3 -2 > ||> 13.47 ||= Octagar ||=   ||=   ||
||= 1728/1715 ||< | 6 3 -1 -3 > ||> 13.07 ||= Orwellisma ||= Orwell Comma ||=   ||
||= 420175/419904 ||< | -6 -8 2 5 > ||> 1.12 ||= Wizma ||=   ||=   ||
||= 2401/2400 ||< | -5 -1 -2 4 > ||> 0.72 ||= Breedsma ||=   ||=   ||
||= 4375/4374 ||< | -1 -7 4 1 > ||> 0.40 ||= Ragisma ||=   ||=   ||
||= 250047/250000 ||< | -4 6 -6 3 > ||> 0.33 ||= Landscape Comma ||=   ||=   ||
||= 99/98 ||< | -1 2 0 -2 1 > ||> 17.58 ||= Mothwellsma ||=   ||=   ||
||= 896/891 ||< | 7 -4 0 1 -1 > ||> 9.69 ||= Pentacircle ||=   ||=   ||
||= 385/384 ||< | -7 -1 1 1 1 > ||> 4.50 ||= Keenanisma ||=   ||=   ||
||= 91/90 ||< | -1 -2 -1 1 0 1 > ||> 19.13 ||= Superleap ||=   ||=   ||

=Music= 

[[http://www.archive.org/details/MusicForYourEars|Music For Your Ears]] <span class="ywp-page-play-pause ywp-page-audio ywp-link-hover ywp-page-img-link">////[[http://www.archive.org/download/MusicForYourEars/musicfor.mp3|play]]////</span> by [[Gene Ward Smith]] The central portion is in 27edo, the rest in [[46edo]].
<span class="ywp-page-play-pause ywp-page-audio ywp-link-hover ywp-page-img-link">////[[http://micro.soonlabel.com/gene_ward_smith/Others/Igs/Sad%20Like%20Winter%20Leaves.mp3|Sad Like Winter Leaves]]////</span> by [[http://soundcloud.com/cityoftheasleep/sad-like-winter-trees|Igliashon Jones]]
<span class="ywp-page-play-pause ywp-page-audio ywp-link-hover ywp-page-img-link">////[[http://micro.soonlabel.com/gene_ward_smith/Others/Taylor/12of27sonatina.mp3|Galticeran Sonatina]]////</span> by [[http://soundcloud.com/joelgranttaylor/galticeran_sonatina|Joel Taylor]]
<span class="ywp-page-play-pause ywp-page-video ywp-link-hover ywp-page-img-link">////[[http://www.youtube.com/watch?v=7QcwKlK6z4c|miniature prelude and fugue]]////</span> by Kosmorsky[[media type="custom" key="10942764"]]
<span class="ywp-page-play-pause ywp-page-audio ywp-link-hover ywp-page-img-link">////[[http://micro.soonlabel.com/27edo/daily20111202-deep-chasm-zeta-cp-1.mp3|Chicago Pile-1]]////</span> by [[Chris Vaisvil]]

Original HTML content:

<html><head><title>27edo</title></head><body><!-- ws:start:WikiTextHeadingRule:1:&lt;h1&gt; --><h1 id="toc0"><a name="x27 tone equal tempertament"></a><!-- ws:end:WikiTextHeadingRule:1 --><span style="color: #0061ff; font-size: 103%;">27 tone equal tempertament</span></h1>
 <br />
If octaves are kept pure, 27edo divides the <a class="wiki_link" href="/octave">octave</a> in 27 equal parts each exactly 44.444... <a class="wiki_link" href="/cent">cent</a>s in size. However, 27 is a prime candidate for <a class="wiki_link" href="/octave%20shrinking">octave shrinking</a>, and a step size of 44.3 to 44.35 cents would be reasonable. The reason for this is that 27edo tunes the <a class="wiki_link" href="/5_4">third</a>, <a class="wiki_link" href="/3_2">fifth</a> and <a class="wiki_link" href="/7_4">7/4</a> sharply.<br />
<br />
Assuming however pure octaves, 27 has a fifth sharp by slightly more than nine cents and a 7/4 sharp by slightly less, and the same 400 cent major third as <a class="wiki_link" href="/12edo">12edo</a>, sharp 13 2/3 cents. The result is that <a class="wiki_link" href="/6_5">6/5</a>, <a class="wiki_link" href="/7_5">7/5</a> and especially <a class="wiki_link" href="/7_6">7/6</a> are all tuned more accurately than this.<br />
<br />
27edo, with its 400 cent major third, tempers out the <a class="wiki_link" href="/diesis">diesis</a> of 128/125, and also the <a class="wiki_link" href="/septimal%20comma">septimal comma</a>, 64/63 (and hence 126/125 also.) These it shares with 12edo, making some relationships familiar, and as a consequence they both support augene temperament. It shares with <a class="wiki_link" href="/22edo">22edo</a> tempering out the allegedly Bohlen-Pierce comma 245/243 as well as 64/63, so that they both support superpyth temperament, with quite sharp &quot;superpythagorean&quot; fifths giving a sharp 9/7 in place of meantone's 5/4.<br />
<br />
Though the <a class="wiki_link" href="/7-limit">7-limit</a> tuning of 27edo is not highly accurate, it nonetheless is the smallest equal division to represent the 7 odd limit both <a class="wiki_link" href="/consistent">consistent</a>ly and distinctly--that is, everything in the 7-limit <a class="wiki_link" href="/Diamonds">diamond</a> is uniquely represented by a certain number of steps of 27 equal. It also represents the 13th harmonic very well, and performs quite decently as a 2.3.5.7.13 temperament<br />
<br />
<!-- ws:start:WikiTextHeadingRule:3:&lt;h2&gt; --><h2 id="toc1"><a name="x27 tone equal tempertament-Intervals"></a><!-- ws:end:WikiTextHeadingRule:3 -->Intervals</h2>
 

<table class="wiki_table">
    <tr>
        <td>Degrees of 27-EDO<br />
</td>
        <td>Cents value<br />
</td>
        <td style="text-align: center;">Approximate<br />
Ratios*<br />
</td>
        <td style="text-align: center;">Solfege<br />
</td>
    </tr>
    <tr>
        <td>0<br />
</td>
        <td>0<br />
</td>
        <td style="text-align: center;">1/1<br />
</td>
        <td style="text-align: center;">do<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>44.44<br />
</td>
        <td style="text-align: center;">36/35, 49/48, 50/49<br />
</td>
        <td style="text-align: center;">di<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>88.89<br />
</td>
        <td style="text-align: center;">16/15, 21/20, 25/24<br />
</td>
        <td style="text-align: center;">ra<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>133.33<br />
</td>
        <td style="text-align: center;">14/13, 13/12<br />
</td>
        <td style="text-align: center;">ru<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>177.78<br />
</td>
        <td style="text-align: center;">10/9<br />
</td>
        <td style="text-align: center;">reh<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>222.22<br />
</td>
        <td style="text-align: center;">8/7, 9/8<br />
</td>
        <td style="text-align: center;">re<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td>266.67<br />
</td>
        <td style="text-align: center;">7/6<br />
</td>
        <td style="text-align: center;">ma<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td>311.11<br />
</td>
        <td style="text-align: center;">6/5<br />
</td>
        <td style="text-align: center;">me<br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td>355.56<br />
</td>
        <td style="text-align: center;">16/13<br />
</td>
        <td style="text-align: center;">mu<br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td>400<br />
</td>
        <td style="text-align: center;">5/4<br />
</td>
        <td style="text-align: center;">mi<br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td>444.44<br />
</td>
        <td style="text-align: center;">9/7, 13/10<br />
</td>
        <td style="text-align: center;">mo<br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td>488.89<br />
</td>
        <td style="text-align: center;">4/3<br />
</td>
        <td style="text-align: center;">fa<br />
</td>
    </tr>
    <tr>
        <td>12<br />
</td>
        <td>533.33<br />
</td>
        <td style="text-align: center;">49/36, 48/35<br />
</td>
        <td style="text-align: center;">fih<br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td>577.78<br />
</td>
        <td style="text-align: center;">7/5<br />
</td>
        <td style="text-align: center;">fi<br />
</td>
    </tr>
    <tr>
        <td>14<br />
</td>
        <td>622.22<br />
</td>
        <td style="text-align: center;">10/7<br />
</td>
        <td style="text-align: center;">se<br />
</td>
    </tr>
    <tr>
        <td>15<br />
</td>
        <td>666.67<br />
</td>
        <td style="text-align: center;">72/49, 35/24<br />
</td>
        <td style="text-align: center;">sih<br />
</td>
    </tr>
    <tr>
        <td>16<br />
</td>
        <td>711.11<br />
</td>
        <td style="text-align: center;">3/2<br />
</td>
        <td style="text-align: center;">so/sol<br />
</td>
    </tr>
    <tr>
        <td>17<br />
</td>
        <td>755.56<br />
</td>
        <td style="text-align: center;">14/9, 20/13<br />
</td>
        <td style="text-align: center;">lo<br />
</td>
    </tr>
    <tr>
        <td>18<br />
</td>
        <td>800<br />
</td>
        <td style="text-align: center;">8/5<br />
</td>
        <td style="text-align: center;">le<br />
</td>
    </tr>
    <tr>
        <td>19<br />
</td>
        <td>844.44<br />
</td>
        <td style="text-align: center;">13/8<br />
</td>
        <td style="text-align: center;">lu<br />
</td>
    </tr>
    <tr>
        <td>20<br />
</td>
        <td>888.89<br />
</td>
        <td style="text-align: center;">5/3<br />
</td>
        <td style="text-align: center;">la<br />
</td>
    </tr>
    <tr>
        <td>21<br />
</td>
        <td>933.33<br />
</td>
        <td style="text-align: center;">12/7<br />
</td>
        <td style="text-align: center;">li<br />
</td>
    </tr>
    <tr>
        <td>22<br />
</td>
        <td>977.78<br />
</td>
        <td style="text-align: center;">7/4, 16/9<br />
</td>
        <td style="text-align: center;">ta<br />
</td>
    </tr>
    <tr>
        <td>23<br />
</td>
        <td>1022.22<br />
</td>
        <td style="text-align: center;">9/5<br />
</td>
        <td style="text-align: center;">te<br />
</td>
    </tr>
    <tr>
        <td>24<br />
</td>
        <td>1066,67<br />
</td>
        <td style="text-align: center;">13/7, 24/13<br />
</td>
        <td style="text-align: center;">tu<br />
</td>
    </tr>
    <tr>
        <td>25<br />
</td>
        <td>1111.11<br />
</td>
        <td style="text-align: center;">40/21<br />
</td>
        <td style="text-align: center;">ti<br />
</td>
    </tr>
    <tr>
        <td>26<br />
</td>
        <td>1155.56<br />
</td>
        <td style="text-align: center;">35/18, 96/49, 49/25<br />
</td>
        <td style="text-align: center;">da<br />
</td>
    </tr>
    <tr>
        <td>27<br />
</td>
        <td>1200<br />
</td>
        <td style="text-align: center;">2/1<br />
</td>
        <td style="text-align: center;">do<br />
</td>
    </tr>
</table>

*based on treating 27-EDO as a 2.3.5.7.13 subgroup temperament; other approaches are possible.<br />
<!-- ws:start:WikiTextHeadingRule:5:&lt;h2&gt; --><h2 id="toc2"><a name="x27 tone equal tempertament-Rank two temperaments"></a><!-- ws:end:WikiTextHeadingRule:5 -->Rank two temperaments</h2>
 <a class="wiki_link" href="/List%20of%2027edo%20rank%20two%20temperaments%20by%20badness">List of 27edo rank two temperaments by badness</a><br />
<a class="wiki_link" href="/List%20of%20edo-distinct%2027e%20rank%20two%20temperaments">List of edo-distinct 27e rank two temperaments</a><br />


<table class="wiki_table">
    <tr>
        <th>Periods<br />
per octave<br />
</th>
        <th>Generator<br />
</th>
        <th>Temperaments<br />
</th>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>1\27<br />
</td>
        <td><a class="wiki_link" href="/Quartonic">Quartonic</a>/Quarto<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>2\27<br />
</td>
        <td><a class="wiki_link" href="/Octacot">Octacot</a>/Octocat<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>4\27<br />
</td>
        <td><a class="wiki_link" href="/Tetracot">Tetracot</a>/Modus/Wollemia<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>5\27<br />
</td>
        <td><a class="wiki_link" href="/Machine">Machine</a>/Kumonga<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>7\27<br />
</td>
        <td><a class="wiki_link" href="/Myna">Myna</a>/Coleto/Minah<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>8\27<br />
</td>
        <td><a class="wiki_link" href="/Beatles">Beatles</a>/Ringo<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>10\27<br />
</td>
        <td><a class="wiki_link" href="/Sensi">Sensi</a>/Sensis<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>11\27<br />
</td>
        <td><a class="wiki_link" href="/Superpyth">Superpyth</a><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>13\27<br />
</td>
        <td>Fervor<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>1\27<br />
</td>
        <td><a class="wiki_link" href="/Semiaug">Semiaug</a>/Hemiaug<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>2\27<br />
</td>
        <td><a class="wiki_link" href="/Augmented">Augmented</a>/<a class="wiki_link" href="/augene">Augene</a>/Ogene<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>4\27<br />
</td>
        <td>Oodako<br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td>1\27<br />
</td>
        <td>Terrible version of <a class="wiki_link" href="/Ennealimmal">Ennealimmal</a><br />
/ Niner<br />
</td>
    </tr>
</table>

<!-- ws:start:WikiTextHeadingRule:7:&lt;h2&gt; --><h2 id="toc3"><a name="x27 tone equal tempertament-Commas"></a><!-- ws:end:WikiTextHeadingRule:7 -->Commas</h2>
 27 EDO tempers out the following commas. (Note: This assumes the val &lt; 27 43 63 76 93 100 |.)<br />


<table class="wiki_table">
    <tr>
        <th>Comma<br />
</th>
        <th>Monzo<br />
</th>
        <th>Value (Cents)<br />
</th>
        <th>Name 1<br />
</th>
        <th>Name 2<br />
</th>
        <th>Name 3<br />
</th>
    </tr>
    <tr>
        <td style="text-align: center;">128/125<br />
</td>
        <td style="text-align: left;">| 7 0 -3 &gt;<br />
</td>
        <td style="text-align: right;">41.06<br />
</td>
        <td style="text-align: center;">Diesis<br />
</td>
        <td style="text-align: center;">Augmented Comma<br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">20000/19683<br />
</td>
        <td style="text-align: left;">| 5 -9 4 &gt;<br />
</td>
        <td style="text-align: right;">27.66<br />
</td>
        <td style="text-align: center;">Minimal Diesis<br />
</td>
        <td style="text-align: center;">Tetracot Comma<br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">78732/78125<br />
</td>
        <td style="text-align: left;">| 2 9 -7 &gt;<br />
</td>
        <td style="text-align: right;">13.40<br />
</td>
        <td style="text-align: center;">Medium Semicomma<br />
</td>
        <td style="text-align: center;">Sensipent Comma<br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">4711802/4709457<br />
</td>
        <td style="text-align: left;">| 1 -27 18 &gt;<br />
</td>
        <td style="text-align: right;">0.86<br />
</td>
        <td style="text-align: center;">Ennealimma<br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">686/675<br />
</td>
        <td style="text-align: left;">| 1 -3 -2 3 &gt;<br />
</td>
        <td style="text-align: right;">27.99<br />
</td>
        <td style="text-align: center;">Senga<br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">64/63<br />
</td>
        <td style="text-align: left;">| 6 -2 0 -1 &gt;<br />
</td>
        <td style="text-align: right;">27.26<br />
</td>
        <td style="text-align: center;">Septimal Comma<br />
</td>
        <td style="text-align: center;">Archytas' Comma<br />
</td>
        <td style="text-align: center;">Leipziger Komma<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">50421/50000<br />
</td>
        <td style="text-align: left;">| -4 1 -5 5 &gt;<br />
</td>
        <td style="text-align: right;">14.52<br />
</td>
        <td style="text-align: center;">Trimyna<br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">245/243<br />
</td>
        <td style="text-align: left;">| 0 -5 1 2 &gt;<br />
</td>
        <td style="text-align: right;">14.19<br />
</td>
        <td style="text-align: center;">Sensamagic<br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">126/125<br />
</td>
        <td style="text-align: left;">| 1 2 -3 1 &gt;<br />
</td>
        <td style="text-align: right;">13.79<br />
</td>
        <td style="text-align: center;">Septimal Semicomma<br />
</td>
        <td style="text-align: center;">Starling Comma<br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">4000/3969<br />
</td>
        <td style="text-align: left;">| 5 -4 3 -2 &gt;<br />
</td>
        <td style="text-align: right;">13.47<br />
</td>
        <td style="text-align: center;">Octagar<br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">1728/1715<br />
</td>
        <td style="text-align: left;">| 6 3 -1 -3 &gt;<br />
</td>
        <td style="text-align: right;">13.07<br />
</td>
        <td style="text-align: center;">Orwellisma<br />
</td>
        <td style="text-align: center;">Orwell Comma<br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">420175/419904<br />
</td>
        <td style="text-align: left;">| -6 -8 2 5 &gt;<br />
</td>
        <td style="text-align: right;">1.12<br />
</td>
        <td style="text-align: center;">Wizma<br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">2401/2400<br />
</td>
        <td style="text-align: left;">| -5 -1 -2 4 &gt;<br />
</td>
        <td style="text-align: right;">0.72<br />
</td>
        <td style="text-align: center;">Breedsma<br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">4375/4374<br />
</td>
        <td style="text-align: left;">| -1 -7 4 1 &gt;<br />
</td>
        <td style="text-align: right;">0.40<br />
</td>
        <td style="text-align: center;">Ragisma<br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">250047/250000<br />
</td>
        <td style="text-align: left;">| -4 6 -6 3 &gt;<br />
</td>
        <td style="text-align: right;">0.33<br />
</td>
        <td style="text-align: center;">Landscape Comma<br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">99/98<br />
</td>
        <td style="text-align: left;">| -1 2 0 -2 1 &gt;<br />
</td>
        <td style="text-align: right;">17.58<br />
</td>
        <td style="text-align: center;">Mothwellsma<br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">896/891<br />
</td>
        <td style="text-align: left;">| 7 -4 0 1 -1 &gt;<br />
</td>
        <td style="text-align: right;">9.69<br />
</td>
        <td style="text-align: center;">Pentacircle<br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">385/384<br />
</td>
        <td style="text-align: left;">| -7 -1 1 1 1 &gt;<br />
</td>
        <td style="text-align: right;">4.50<br />
</td>
        <td style="text-align: center;">Keenanisma<br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">91/90<br />
</td>
        <td style="text-align: left;">| -1 -2 -1 1 0 1 &gt;<br />
</td>
        <td style="text-align: right;">19.13<br />
</td>
        <td style="text-align: center;">Superleap<br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
</table>

<br />
<!-- ws:start:WikiTextHeadingRule:9:&lt;h1&gt; --><h1 id="toc4"><a name="Music"></a><!-- ws:end:WikiTextHeadingRule:9 -->Music</h1>
 <br />
<a class="wiki_link_ext" href="http://www.archive.org/details/MusicForYourEars" rel="nofollow">Music For Your Ears</a> <span class="ywp-page-play-pause ywp-page-audio ywp-link-hover ywp-page-img-link"><a class="wiki_link_ext" href="http://www.archive.org/download/MusicForYourEars/musicfor.mp3" rel="nofollow">play</a></span> by <a class="wiki_link" href="/Gene%20Ward%20Smith">Gene Ward Smith</a> The central portion is in 27edo, the rest in <a class="wiki_link" href="/46edo">46edo</a>.<br />
<span class="ywp-page-play-pause ywp-page-audio ywp-link-hover ywp-page-img-link"><a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/Others/Igs/Sad%20Like%20Winter%20Leaves.mp3" rel="nofollow">Sad Like Winter Leaves</a></span> by <a class="wiki_link_ext" href="http://soundcloud.com/cityoftheasleep/sad-like-winter-trees" rel="nofollow">Igliashon Jones</a><br />
<span class="ywp-page-play-pause ywp-page-audio ywp-link-hover ywp-page-img-link"><a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/Others/Taylor/12of27sonatina.mp3" rel="nofollow">Galticeran Sonatina</a></span> by <a class="wiki_link_ext" href="http://soundcloud.com/joelgranttaylor/galticeran_sonatina" rel="nofollow">Joel Taylor</a><br />
<span class="ywp-page-play-pause ywp-page-video ywp-link-hover ywp-page-img-link"><a class="wiki_link_ext" href="http://www.youtube.com/watch?v=7QcwKlK6z4c" rel="nofollow">miniature prelude and fugue</a></span> by Kosmorsky<!-- ws:start:WikiTextMediaRule:0:&lt;img src=&quot;http://www.wikispaces.com/site/embedthumbnail/custom/10942764?h=0&amp;w=0&quot; class=&quot;WikiMedia WikiMediaCustom&quot; id=&quot;wikitext@@media@@type=&amp;quot;custom&amp;quot; key=&amp;quot;10942764&amp;quot;&quot; title=&quot;Custom Media&quot;/&gt; --><script type="text/javascript" src="http://mediaplayer.yahoo.com/js">
</script><!-- ws:end:WikiTextMediaRule:0 --><br />
<span class="ywp-page-play-pause ywp-page-audio ywp-link-hover ywp-page-img-link"><a class="wiki_link_ext" href="http://micro.soonlabel.com/27edo/daily20111202-deep-chasm-zeta-cp-1.mp3" rel="nofollow">Chicago Pile-1</a></span> by <a class="wiki_link" href="/Chris%20Vaisvil">Chris Vaisvil</a></body></html>