25edo

From Xenharmonic Wiki
Revision as of 16:26, 22 June 2011 by Wikispaces>xenwolf (**Imported revision 238247815 - Original comment: What do you mean by "5" and "7"?**)
Jump to navigation Jump to search

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author xenwolf and made on 2011-06-22 16:26:56 UTC.
The original revision id was 238247815.
The revision comment was: What do you mean by "5" and "7"?

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

[[toc|flat]]

=<span style="color: #006b2e;">25 tone equal temperament</span>= 

25EDO divides the [[octave]] in 25 equal steps of exact size 48 [[cent]]s each. It is a good way to tune the [[Blackwood temperament]], which takes the very sharp fifths of [[5EDO]] as a given, tempers out 28/27 and 49/48, and attempts to optimize the tunings for 5 ([[5_4|5/4]]?) and 7 ([[7_4|7/4]]?).

25EDO has fifths 18 cents sharp, but its major thirds are excellent and its 7/4 is acceptable. It therefore makes sense to use it as a 2.5.7 [[Just intonation subgroups|subgroup]] tuning. Looking just at 2, 5, and 7, it equates five 8/7s with the octave, and so tempers out (8/7)^5 / 2 = 16807/16384. It also equates a 128/125 diesis and two septimal tritones of 7/5 with the octave, and hence tempers out 3136/3125. If we want to temper out both of these and also have decent fifths, the obvious solution is [[50EDO]].

If 5/4 and 7/4 aren't good enough, it also does 17/16 and 19/16, just like 12EDO. In fact, on the [[k*N subgroups|2*25 subgroup]] 2.9.5.7.33.39.17.19 it provides the same tuning and tempers out the same commas as 50et, which makes for wide range of harmony.

=Music=
[[http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Rapoport/StudyInFives.mp3|Study in Fives]] by [[http://en.wikipedia.org/wiki/Paul_Rapoport_%28music_critic%29|Paul Rapoport]]

=Intervals=

|| Degrees of 25-EDO || Cents value ||
|| 0 || 0 ||
|| 1 || 48 ||
|| 2 || 96 ||
|| 3 || 144 ||
|| 4 || 192 ||
|| 5 || 240 ||
|| 6 || 288 ||
|| 7 || 336 ||
|| 8 || 384 ||
|| 9 || 432 ||
|| 10 || 480 ||
|| 11 || 528 ||
|| 12 || 576 ||
|| 13 || 624 ||
|| 14 || 672 ||
|| 15 || 720 ||
|| 16 || 768 ||
|| 17 || 816 ||
|| 18 || 864 ||
|| 19 || 912 ||
|| 20 || 960 ||
|| 21 || 1008 ||
|| 22 || 1056 ||
|| 23 || 1104 ||
|| 24 || 1152 ||

=Commas=
25 EDO tempers out the following commas. (Note: This assumes the val < 25 40 58 70 86 93 |.)
||~ Comma ||~ Monzo ||~ Value (Cents) ||~ Name 1 ||~ Name 2 ||~ Name 3 ||
||= 256/243 ||< | 8 -5 > ||> 90.22 ||= Limma ||= Pythagorean Minor 2nd ||=   ||
||= 3125/3072 ||< | -10 -1 5 > ||> 29.61 ||= Small Diesis ||= Magic Comma ||=   ||
||= 6719816/6714445 ||< | 38 -2 -15 > ||> 1.38 ||= Hemithirds Comma ||=   ||=   ||
||= 16807/16384 || | -14 0 0 5 > ||> 44.13 ||   ||   ||   ||
||= 49/48 ||< | -4 -1 0 2 > ||> 35.70 ||= Slendro Diesis ||=   ||=   ||
||= 64/63 ||< | 6 -2 0 -1 > ||> 27.26 ||= Septimal Comma ||= Archytas' Comma ||= Leipziger Komma ||
||= 3125/3087 ||< | 0 -2 5 -3 > ||> 21.18 ||= Gariboh ||=   ||=   ||
||= 50421/50000 ||< | -4 1 -5 5 > ||> 14.52 ||= Trimyna ||=   ||=   ||
||= 1029/1024 ||< | -10 1 0 3 > ||> 8.43 ||= Gamelisma ||=   ||=   ||
||= 3136/3125 ||< | 6 0 -5 2 > ||> 6.08 ||= Hemimean ||=   ||=   ||
||= 65625/65536 ||< | -16 1 5 1 > ||> 2.35 ||= Horwell ||=   ||=   ||
||= 100/99 ||< | 2 -2 2 0 -1 > ||> 17.40 ||= Ptolemisma ||=   ||=   ||
||= 176/175 ||< | 4 0 -2 -1 1 > ||> 9.86 ||= Valinorsma ||=   ||=   ||
||= 91/90 ||< | -1 -2 -1 1 0 1 > ||> 19.13 ||= Superleap ||=   ||=   ||
||= 676/675 ||< | 2 -3 -2 0 0 2 > ||> 2.56 ||= Parizeksma ||=   ||=   ||

=A 25edo keyboard=

[[image:mm25.PNG]]

Original HTML content:

<html><head><title>25edo</title></head><body><!-- ws:start:WikiTextTocRule:10:&lt;img id=&quot;wikitext@@toc@@flat&quot; class=&quot;WikiMedia WikiMediaTocFlat&quot; title=&quot;Table of Contents&quot; src=&quot;/site/embedthumbnail/toc/flat?w=100&amp;h=16&quot;/&gt; --><!-- ws:end:WikiTextTocRule:10 --><!-- ws:start:WikiTextTocRule:11: --><a href="#x25 tone equal temperament">25 tone equal temperament</a><!-- ws:end:WikiTextTocRule:11 --><!-- ws:start:WikiTextTocRule:12: --> | <a href="#Music">Music</a><!-- ws:end:WikiTextTocRule:12 --><!-- ws:start:WikiTextTocRule:13: --> | <a href="#Intervals">Intervals</a><!-- ws:end:WikiTextTocRule:13 --><!-- ws:start:WikiTextTocRule:14: --> | <a href="#Commas">Commas</a><!-- ws:end:WikiTextTocRule:14 --><!-- ws:start:WikiTextTocRule:15: --> | <a href="#A 25edo keyboard">A 25edo keyboard</a><!-- ws:end:WikiTextTocRule:15 --><!-- ws:start:WikiTextTocRule:16: -->
<!-- ws:end:WikiTextTocRule:16 --><br />
<!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="x25 tone equal temperament"></a><!-- ws:end:WikiTextHeadingRule:0 --><span style="color: #006b2e;">25 tone equal temperament</span></h1>
 <br />
25EDO divides the <a class="wiki_link" href="/octave">octave</a> in 25 equal steps of exact size 48 <a class="wiki_link" href="/cent">cent</a>s each. It is a good way to tune the <a class="wiki_link" href="/Blackwood%20temperament">Blackwood temperament</a>, which takes the very sharp fifths of <a class="wiki_link" href="/5EDO">5EDO</a> as a given, tempers out 28/27 and 49/48, and attempts to optimize the tunings for 5 (<a class="wiki_link" href="/5_4">5/4</a>?) and 7 (<a class="wiki_link" href="/7_4">7/4</a>?).<br />
<br />
25EDO has fifths 18 cents sharp, but its major thirds are excellent and its 7/4 is acceptable. It therefore makes sense to use it as a 2.5.7 <a class="wiki_link" href="/Just%20intonation%20subgroups">subgroup</a> tuning. Looking just at 2, 5, and 7, it equates five 8/7s with the octave, and so tempers out (8/7)^5 / 2 = 16807/16384. It also equates a 128/125 diesis and two septimal tritones of 7/5 with the octave, and hence tempers out 3136/3125. If we want to temper out both of these and also have decent fifths, the obvious solution is <a class="wiki_link" href="/50EDO">50EDO</a>.<br />
<br />
If 5/4 and 7/4 aren't good enough, it also does 17/16 and 19/16, just like 12EDO. In fact, on the <a class="wiki_link" href="/k%2AN%20subgroups">2*25 subgroup</a> 2.9.5.7.33.39.17.19 it provides the same tuning and tempers out the same commas as 50et, which makes for wide range of harmony.<br />
<br />
<!-- ws:start:WikiTextHeadingRule:2:&lt;h1&gt; --><h1 id="toc1"><a name="Music"></a><!-- ws:end:WikiTextHeadingRule:2 -->Music</h1>
<a class="wiki_link_ext" href="http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Rapoport/StudyInFives.mp3" rel="nofollow">Study in Fives</a> by <a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Paul_Rapoport_%28music_critic%29" rel="nofollow">Paul Rapoport</a><br />
<br />
<!-- ws:start:WikiTextHeadingRule:4:&lt;h1&gt; --><h1 id="toc2"><a name="Intervals"></a><!-- ws:end:WikiTextHeadingRule:4 -->Intervals</h1>
<br />


<table class="wiki_table">
    <tr>
        <td>Degrees of 25-EDO<br />
</td>
        <td>Cents value<br />
</td>
    </tr>
    <tr>
        <td>0<br />
</td>
        <td>0<br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>48<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>96<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>144<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>192<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>240<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td>288<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td>336<br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td>384<br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td>432<br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td>480<br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td>528<br />
</td>
    </tr>
    <tr>
        <td>12<br />
</td>
        <td>576<br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td>624<br />
</td>
    </tr>
    <tr>
        <td>14<br />
</td>
        <td>672<br />
</td>
    </tr>
    <tr>
        <td>15<br />
</td>
        <td>720<br />
</td>
    </tr>
    <tr>
        <td>16<br />
</td>
        <td>768<br />
</td>
    </tr>
    <tr>
        <td>17<br />
</td>
        <td>816<br />
</td>
    </tr>
    <tr>
        <td>18<br />
</td>
        <td>864<br />
</td>
    </tr>
    <tr>
        <td>19<br />
</td>
        <td>912<br />
</td>
    </tr>
    <tr>
        <td>20<br />
</td>
        <td>960<br />
</td>
    </tr>
    <tr>
        <td>21<br />
</td>
        <td>1008<br />
</td>
    </tr>
    <tr>
        <td>22<br />
</td>
        <td>1056<br />
</td>
    </tr>
    <tr>
        <td>23<br />
</td>
        <td>1104<br />
</td>
    </tr>
    <tr>
        <td>24<br />
</td>
        <td>1152<br />
</td>
    </tr>
</table>

<br />
<!-- ws:start:WikiTextHeadingRule:6:&lt;h1&gt; --><h1 id="toc3"><a name="Commas"></a><!-- ws:end:WikiTextHeadingRule:6 -->Commas</h1>
25 EDO tempers out the following commas. (Note: This assumes the val &lt; 25 40 58 70 86 93 |.)<br />


<table class="wiki_table">
    <tr>
        <th>Comma<br />
</th>
        <th>Monzo<br />
</th>
        <th>Value (Cents)<br />
</th>
        <th>Name 1<br />
</th>
        <th>Name 2<br />
</th>
        <th>Name 3<br />
</th>
    </tr>
    <tr>
        <td style="text-align: center;">256/243<br />
</td>
        <td style="text-align: left;">| 8 -5 &gt;<br />
</td>
        <td style="text-align: right;">90.22<br />
</td>
        <td style="text-align: center;">Limma<br />
</td>
        <td style="text-align: center;">Pythagorean Minor 2nd<br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">3125/3072<br />
</td>
        <td style="text-align: left;">| -10 -1 5 &gt;<br />
</td>
        <td style="text-align: right;">29.61<br />
</td>
        <td style="text-align: center;">Small Diesis<br />
</td>
        <td style="text-align: center;">Magic Comma<br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">6719816/6714445<br />
</td>
        <td style="text-align: left;">| 38 -2 -15 &gt;<br />
</td>
        <td style="text-align: right;">1.38<br />
</td>
        <td style="text-align: center;">Hemithirds Comma<br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">16807/16384<br />
</td>
        <td>| -14 0 0 5 &gt;<br />
</td>
        <td style="text-align: right;">44.13<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">49/48<br />
</td>
        <td style="text-align: left;">| -4 -1 0 2 &gt;<br />
</td>
        <td style="text-align: right;">35.70<br />
</td>
        <td style="text-align: center;">Slendro Diesis<br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">64/63<br />
</td>
        <td style="text-align: left;">| 6 -2 0 -1 &gt;<br />
</td>
        <td style="text-align: right;">27.26<br />
</td>
        <td style="text-align: center;">Septimal Comma<br />
</td>
        <td style="text-align: center;">Archytas' Comma<br />
</td>
        <td style="text-align: center;">Leipziger Komma<br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">3125/3087<br />
</td>
        <td style="text-align: left;">| 0 -2 5 -3 &gt;<br />
</td>
        <td style="text-align: right;">21.18<br />
</td>
        <td style="text-align: center;">Gariboh<br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">50421/50000<br />
</td>
        <td style="text-align: left;">| -4 1 -5 5 &gt;<br />
</td>
        <td style="text-align: right;">14.52<br />
</td>
        <td style="text-align: center;">Trimyna<br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">1029/1024<br />
</td>
        <td style="text-align: left;">| -10 1 0 3 &gt;<br />
</td>
        <td style="text-align: right;">8.43<br />
</td>
        <td style="text-align: center;">Gamelisma<br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">3136/3125<br />
</td>
        <td style="text-align: left;">| 6 0 -5 2 &gt;<br />
</td>
        <td style="text-align: right;">6.08<br />
</td>
        <td style="text-align: center;">Hemimean<br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">65625/65536<br />
</td>
        <td style="text-align: left;">| -16 1 5 1 &gt;<br />
</td>
        <td style="text-align: right;">2.35<br />
</td>
        <td style="text-align: center;">Horwell<br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">100/99<br />
</td>
        <td style="text-align: left;">| 2 -2 2 0 -1 &gt;<br />
</td>
        <td style="text-align: right;">17.40<br />
</td>
        <td style="text-align: center;">Ptolemisma<br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">176/175<br />
</td>
        <td style="text-align: left;">| 4 0 -2 -1 1 &gt;<br />
</td>
        <td style="text-align: right;">9.86<br />
</td>
        <td style="text-align: center;">Valinorsma<br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">91/90<br />
</td>
        <td style="text-align: left;">| -1 -2 -1 1 0 1 &gt;<br />
</td>
        <td style="text-align: right;">19.13<br />
</td>
        <td style="text-align: center;">Superleap<br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">676/675<br />
</td>
        <td style="text-align: left;">| 2 -3 -2 0 0 2 &gt;<br />
</td>
        <td style="text-align: right;">2.56<br />
</td>
        <td style="text-align: center;">Parizeksma<br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
</table>

<br />
<!-- ws:start:WikiTextHeadingRule:8:&lt;h1&gt; --><h1 id="toc4"><a name="A 25edo keyboard"></a><!-- ws:end:WikiTextHeadingRule:8 -->A 25edo keyboard</h1>
<br />
<!-- ws:start:WikiTextLocalImageRule:401:&lt;img src=&quot;/file/view/mm25.PNG/179204243/mm25.PNG&quot; alt=&quot;&quot; title=&quot;&quot; /&gt; --><img src="/file/view/mm25.PNG/179204243/mm25.PNG" alt="mm25.PNG" title="mm25.PNG" /><!-- ws:end:WikiTextLocalImageRule:401 --></body></html>