11-limit

From Xenharmonic Wiki
Revision as of 16:44, 14 June 2011 by Wikispaces>genewardsmith (**Imported revision 236663426 - Original comment: **)
Jump to navigation Jump to search

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author genewardsmith and made on 2011-06-14 16:44:11 UTC.
The original revision id was 236663426.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

The //11-limit// consists of all [[JustIntonation|justly tuned]] intervals whose numerators and denominators are both products of the primes 2, 3, 5, 7 and 11. Some examples of 11-limit intervals are [[14_11|14/11]], [[11_8|11/8]], [[27_22|27/22]] and [[99_98|99/98]]. The 11 odd-limit consists of intervals whose numerators and denominators, when all factors of two have been removed, are less than or equal to 11. Reduced to an octave, these are the ratios 1/1, 12/11, 11/10, 10/9, 9/8, 8/7, 7/6, 6/5, 11/9, 5/4, 14/11, 9/7, 4/3, 11/8, 7/5, 10/7, 16/11, 3/2, 14/9, 11/7, 8/5, 18/11, 5/3, 12/7, 7/4, 16/9, 9/5, 20/11, 11/6, 2/1.

Relative to their size, [[edo]]s which do (relatively) well in supporting 11-limit intervals are: [[12edo]], [[15edo]], [[22edo]], [[31edo]], [[41edo]], [[46edo]], [[58edo]], [[72edo]], [[118edo]], [[130edo]] and [[152edo]].

See [[Harmonic Limit]].

=Music=
[[http://sonic-arts.org/hill/10-passages-ji/10-passages-ji.htm|Study #3]] [[http://sonic-arts.org/hill/10-passages-ji/04_hill_study-3.mp3|play]] by [[Dave Hill]]
[[http://sonic-arts.org/hill/10-passages-ji/10-passages-ji.htm|Brief 11-ratio composition]] [[http://sonic-arts.org/hill/10-passages-ji/09_hill_brief-11-ratio-composition.mp3|play]] by Dave Hill

Original HTML content:

<html><head><title>11-limit</title></head><body>The <em>11-limit</em> consists of all <a class="wiki_link" href="/JustIntonation">justly tuned</a> intervals whose numerators and denominators are both products of the primes 2, 3, 5, 7 and 11. Some examples of 11-limit intervals are <a class="wiki_link" href="/14_11">14/11</a>, <a class="wiki_link" href="/11_8">11/8</a>, <a class="wiki_link" href="/27_22">27/22</a> and <a class="wiki_link" href="/99_98">99/98</a>. The 11 odd-limit consists of intervals whose numerators and denominators, when all factors of two have been removed, are less than or equal to 11. Reduced to an octave, these are the ratios 1/1, 12/11, 11/10, 10/9, 9/8, 8/7, 7/6, 6/5, 11/9, 5/4, 14/11, 9/7, 4/3, 11/8, 7/5, 10/7, 16/11, 3/2, 14/9, 11/7, 8/5, 18/11, 5/3, 12/7, 7/4, 16/9, 9/5, 20/11, 11/6, 2/1.<br />
<br />
Relative to their size, <a class="wiki_link" href="/edo">edo</a>s which do (relatively) well in supporting 11-limit intervals are: <a class="wiki_link" href="/12edo">12edo</a>, <a class="wiki_link" href="/15edo">15edo</a>, <a class="wiki_link" href="/22edo">22edo</a>, <a class="wiki_link" href="/31edo">31edo</a>, <a class="wiki_link" href="/41edo">41edo</a>, <a class="wiki_link" href="/46edo">46edo</a>, <a class="wiki_link" href="/58edo">58edo</a>, <a class="wiki_link" href="/72edo">72edo</a>, <a class="wiki_link" href="/118edo">118edo</a>, <a class="wiki_link" href="/130edo">130edo</a> and <a class="wiki_link" href="/152edo">152edo</a>.<br />
<br />
See <a class="wiki_link" href="/Harmonic%20Limit">Harmonic Limit</a>.<br />
<br />
<!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Music"></a><!-- ws:end:WikiTextHeadingRule:0 -->Music</h1>
<a class="wiki_link_ext" href="http://sonic-arts.org/hill/10-passages-ji/10-passages-ji.htm" rel="nofollow">Study #3</a> <a class="wiki_link_ext" href="http://sonic-arts.org/hill/10-passages-ji/04_hill_study-3.mp3" rel="nofollow">play</a> by <a class="wiki_link" href="/Dave%20Hill">Dave Hill</a><br />
<a class="wiki_link_ext" href="http://sonic-arts.org/hill/10-passages-ji/10-passages-ji.htm" rel="nofollow">Brief 11-ratio composition</a> <a class="wiki_link_ext" href="http://sonic-arts.org/hill/10-passages-ji/09_hill_brief-11-ratio-composition.mp3" rel="nofollow">play</a> by Dave Hill</body></html>