User:BudjarnLambeth/Sandbox2
Title1
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -4.1 | -8.5 | -8.2 | +4.1 | -12.6 | +19.5 | -12.3 | -16.9 | +0.0 | +34.3 | -16.7 |
Relative (%) | -4.1 | -8.5 | -8.2 | +4.1 | -12.6 | +19.6 | -12.4 | -17.0 | +0.0 | +34.4 | -16.7 | |
Steps (reduced) |
12 (12) |
19 (19) |
24 (24) |
28 (28) |
31 (31) |
34 (34) |
36 (36) |
38 (38) |
40 (0) |
42 (2) |
43 (3) |
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +3.4 | +3.4 | +6.7 | +21.5 | +6.7 | +40.7 | +10.1 | +6.7 | +24.9 | -39.9 | +10.1 |
Relative (%) | +3.3 | +3.3 | +6.7 | +21.4 | +6.7 | +40.6 | +10.0 | +6.7 | +24.8 | -39.8 | +10.0 | |
Steps (reduced) |
12 (5) |
19 (5) |
24 (3) |
28 (0) |
31 (3) |
34 (6) |
36 (1) |
38 (3) |
40 (5) |
41 (6) |
43 (1) |
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +1.2 | +0.0 | +2.5 | +16.6 | +1.2 | +34.7 | +3.7 | +0.0 | +17.8 | -47.1 | +2.5 |
Relative (%) | +1.2 | +0.0 | +2.5 | +16.6 | +1.2 | +34.6 | +3.7 | +0.0 | +17.8 | -47.1 | +2.5 | |
Steps (reduced) |
12 (12) |
19 (0) |
24 (5) |
28 (9) |
31 (12) |
34 (15) |
36 (17) |
38 (0) |
40 (2) |
41 (3) |
43 (5) |
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.8 | -0.8 | +1.5 | +15.5 | +0.0 | +33.3 | +2.3 | -1.5 | +16.2 | -48.7 | +0.8 |
Relative (%) | +0.8 | -0.8 | +1.5 | +15.4 | +0.0 | +33.3 | +2.3 | -1.5 | +16.2 | -48.7 | +0.8 | |
Steps (reduced) |
12 (12) |
19 (19) |
24 (24) |
28 (28) |
31 (0) |
34 (3) |
36 (5) |
38 (7) |
40 (9) |
41 (10) |
43 (12) |
Title2
Octave stretch or compression
What follows is a comparison of stretched- and compressed-octave 12edo tunings.
- Step size: 99.658 ¢, octave size: 1195.9 ¢
Compressing the octave of EDONAME by around 4 ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning 40ed10 does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -4.1 | -8.5 | -8.2 | +4.1 | -12.6 | +19.5 | -12.3 | -16.9 | +0.0 | +34.3 | -16.7 |
Relative (%) | -4.1 | -8.5 | -8.2 | +4.1 | -12.6 | +19.6 | -12.4 | -17.0 | +0.0 | +34.4 | -16.7 | |
Steps (reduced) |
12 (12) |
19 (19) |
24 (24) |
28 (28) |
31 (31) |
34 (34) |
36 (36) |
38 (38) |
40 (0) |
42 (2) |
43 (3) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +44.1 | +15.4 | -4.4 | -16.4 | -21.7 | -21.0 | -15.0 | -4.1 | +11.1 | +30.2 | -46.8 | -20.8 |
Relative (%) | +44.2 | +15.5 | -4.4 | -16.5 | -21.8 | -21.1 | -15.0 | -4.1 | +11.1 | +30.3 | -46.9 | -20.8 | |
Steps (reduced) |
45 (5) |
46 (6) |
47 (7) |
48 (8) |
49 (9) |
50 (10) |
51 (11) |
52 (12) |
53 (13) |
54 (14) |
54 (14) |
55 (15) |
- Step size: 99.664 ¢, octave size: NNN ¢
Compressing the octave of EDONAME by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. Its 7-limit WE tuning and 7-limit TE tuning both do this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -4.0 | -8.3 | -8.1 | +4.3 | -12.4 | +19.8 | -12.1 | -16.7 | +0.2 | +34.6 | -16.4 |
Relative (%) | -4.0 | -8.4 | -8.1 | +4.3 | -12.4 | +19.8 | -12.1 | -16.7 | +0.2 | +34.7 | -16.5 | |
Step | 12 | 19 | 24 | 28 | 31 | 34 | 36 | 38 | 40 | 42 | 43 |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +44.4 | +15.7 | -4.1 | -16.1 | -21.4 | -20.7 | -14.6 | -3.8 | +11.4 | +30.5 | -46.4 | -20.4 |
Relative (%) | +44.5 | +15.8 | -4.1 | -16.2 | -21.5 | -20.8 | -14.7 | -3.8 | +11.4 | +30.6 | -46.6 | -20.5 | |
Step | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 54 | 55 |
- Step size: 99.807 ¢, octave size: NNN ¢
Compressing the octave of 12edo by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning 34zpi does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -2.3 | -5.6 | -4.6 | +8.3 | -7.9 | +24.6 | -6.9 | -11.2 | +6.0 | +40.6 | -10.3 |
Relative (%) | -2.3 | -5.6 | -4.6 | +8.3 | -8.0 | +24.7 | -7.0 | -11.3 | +6.0 | +40.7 | -10.3 | |
Step | 12 | 19 | 24 | 28 | 31 | 34 | 36 | 38 | 40 | 42 | 43 |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -49.0 | +22.3 | +2.7 | -9.3 | -14.4 | -13.6 | -7.4 | +3.7 | +19.0 | +38.3 | -38.7 | -12.6 |
Relative (%) | -49.1 | +22.3 | +2.7 | -9.3 | -14.4 | -13.6 | -7.4 | +3.7 | +19.0 | +38.3 | -38.8 | -12.6 | |
Step | 44 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 54 | 55 |
- Step size: 99.868 ¢, octave size: NNN ¢
Compressing the octave of EDONAME by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. Its 5-limit WE tuning and 5-limit TE tuning both do this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -1.6 | -4.5 | -3.2 | +10.0 | -6.0 | +26.7 | -4.8 | -8.9 | +8.4 | +43.1 | -7.6 |
Relative (%) | -1.6 | -4.5 | -3.2 | +10.0 | -6.1 | +26.7 | -4.8 | -8.9 | +8.4 | +43.2 | -7.6 | |
Step | 12 | 19 | 24 | 28 | 31 | 34 | 36 | 38 | 40 | 42 | 43 |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -46.3 | +25.1 | +5.5 | -6.3 | -11.4 | -10.5 | -4.2 | +6.8 | +22.2 | +41.6 | -35.4 | -9.2 |
Relative (%) | -46.4 | +25.1 | +5.5 | -6.3 | -11.4 | -10.5 | -4.3 | +6.8 | +22.3 | +41.6 | -35.4 | -9.2 | |
Step | 44 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 54 | 55 |
- Step size: 99.930 ¢, octave size: NNN ¢
Compressing the octave of 12edo by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The 2.3.5.17.19 WE tuning and 2.3.5.17.19 TE tuning both do this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -0.8 | -3.3 | -1.7 | +11.7 | -4.1 | +28.8 | -2.5 | -6.6 | +10.9 | +45.7 | -5.0 |
Relative (%) | -0.8 | -3.3 | -1.7 | +11.7 | -4.1 | +28.8 | -2.5 | -6.6 | +10.9 | +45.8 | -5.0 | |
Step | 12 | 19 | 24 | 28 | 31 | 34 | 36 | 38 | 40 | 42 | 43 |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -43.6 | +28.0 | +8.4 | -3.4 | -8.4 | -7.4 | -1.1 | +10.0 | +25.5 | +44.9 | -32.1 | -5.8 |
Relative (%) | -43.6 | +28.0 | +8.4 | -3.4 | -8.4 | -7.4 | -1.1 | +10.1 | +25.5 | +44.9 | -32.1 | -5.8 | |
Step | 44 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 54 | 55 |
- 12edo
- Step size: 100.000 ¢, octave size: 1200.0 ¢
Pure-octaves EDONAME approximates all harmonics up to 16 within NNN ¢.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | -2.0 | +0.0 | +13.7 | -2.0 | +31.2 | +0.0 | -3.9 | +13.7 | +48.7 | -2.0 |
Relative (%) | +0.0 | -2.0 | +0.0 | +13.7 | -2.0 | +31.2 | +0.0 | -3.9 | +13.7 | +48.7 | -2.0 | |
Steps (reduced) |
12 (0) |
19 (7) |
24 (0) |
28 (4) |
31 (7) |
34 (10) |
36 (0) |
38 (2) |
40 (4) |
42 (6) |
43 (7) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -40.5 | +31.2 | +11.7 | +0.0 | -5.0 | -3.9 | +2.5 | +13.7 | +29.2 | +48.7 | -28.3 | -2.0 |
Relative (%) | -40.5 | +31.2 | +11.7 | +0.0 | -5.0 | -3.9 | +2.5 | +13.7 | +29.2 | +48.7 | -28.3 | -2.0 | |
Steps (reduced) |
44 (8) |
46 (10) |
47 (11) |
48 (0) |
49 (1) |
50 (2) |
51 (3) |
52 (4) |
53 (5) |
54 (6) |
54 (6) |
55 (7) |
- Step size: 100.063 ¢, octave size: 1200.8 ¢
Stretching the octave of 12edo by a little less than 1 ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning 31ed6 does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.8 | -0.8 | +1.5 | +15.5 | +0.0 | +33.3 | +2.3 | -1.5 | +16.2 | -48.7 | +0.8 |
Relative (%) | +0.8 | -0.8 | +1.5 | +15.4 | +0.0 | +33.3 | +2.3 | -1.5 | +16.2 | -48.7 | +0.8 | |
Steps (reduced) |
12 (12) |
19 (19) |
24 (24) |
28 (28) |
31 (0) |
34 (3) |
36 (5) |
38 (7) |
40 (9) |
41 (10) |
43 (12) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -37.8 | +34.1 | +14.7 | +3.0 | -1.9 | -0.8 | +5.7 | +17.0 | +32.6 | -48.0 | -24.9 | +1.5 |
Relative (%) | -37.7 | +34.1 | +14.7 | +3.0 | -1.9 | -0.8 | +5.7 | +17.0 | +32.5 | -47.9 | -24.9 | +1.5 | |
Steps (reduced) |
44 (13) |
46 (15) |
47 (16) |
48 (17) |
49 (18) |
50 (19) |
51 (20) |
52 (21) |
53 (22) |
53 (22) |
54 (23) |
55 (24) |
- Step size: 101.103 ¢, octave size: 1201.2 ¢
Stretching the octave of 12edo by a little more than 1 ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning 19edt does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +1.2 | +0.0 | +2.5 | +16.6 | +1.2 | +34.7 | +3.7 | +0.0 | +17.8 | -47.1 | +2.5 |
Relative (%) | +1.2 | +0.0 | +2.5 | +16.6 | +1.2 | +34.6 | +3.7 | +0.0 | +17.8 | -47.1 | +2.5 | |
Steps (reduced) |
12 (12) |
19 (0) |
24 (5) |
28 (9) |
31 (12) |
34 (15) |
36 (17) |
38 (0) |
40 (2) |
41 (3) |
43 (5) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -36.0 | +35.9 | +16.6 | +4.9 | +0.1 | +1.2 | +7.7 | +19.0 | +34.7 | -45.9 | -22.7 | +3.7 |
Relative (%) | -36.0 | +35.9 | +16.6 | +4.9 | +0.1 | +1.2 | +7.7 | +19.0 | +34.6 | -45.8 | -22.7 | +3.7 | |
Steps (reduced) |
44 (6) |
46 (8) |
47 (9) |
48 (10) |
49 (11) |
50 (12) |
51 (13) |
52 (14) |
53 (15) |
53 (15) |
54 (16) |
55 (17) |
- Step size: 100.3 ¢, octave size: 1203.35 ¢
Stretching the octave of 12edo by around 3 ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning 7edf does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +3.4 | +3.4 | +6.7 | +21.5 | +6.7 | +40.7 | +10.1 | +6.7 | +24.9 | -39.9 | +10.1 |
Relative (%) | +3.3 | +3.3 | +6.7 | +21.4 | +6.7 | +40.6 | +10.0 | +6.7 | +24.8 | -39.8 | +10.0 | |
Steps (reduced) |
12 (5) |
19 (5) |
24 (3) |
28 (0) |
31 (3) |
34 (6) |
36 (1) |
38 (3) |
40 (5) |
41 (6) |
43 (1) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -28.2 | +44.0 | +24.9 | +13.4 | +8.7 | +10.1 | +16.7 | +28.2 | +44.0 | -36.5 | -13.2 | +13.4 |
Relative (%) | -28.2 | +43.9 | +24.8 | +13.4 | +8.7 | +10.0 | +16.7 | +28.1 | +43.9 | -36.4 | -13.2 | +13.4 | |
Steps (reduced) |
44 (2) |
46 (4) |
47 (5) |
48 (6) |
49 (0) |
50 (1) |
51 (2) |
52 (3) |
53 (4) |
53 (4) |
54 (5) |
55 (6) |