3159811edo
![]() |
This page presents a novelty topic.
It may contain ideas which are less likely to find practical applications in music, or numbers or structures that are arbitrary or exceedingly small, large, or complex. Novelty topics are often developed by a single person or a small group. As such, this page may also contain idiosyncratic terms, notation, or conceptual frameworks. |
← 3159810edo | 3159811edo | 3159812edo → |
3159811 equal divisions of the octave (abbreviated 3159811edo or 3159811ed2), also called 3159811-tone equal temperament (3159811tet) or 3159811 equal temperament (3159811et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 3159811 equal parts of about 0.00038 ¢ each. Each step represents a frequency ratio of 21/3159811, or the 3159811th root of 2.
3159811edo is consistent in the 65-odd-limit with a lower relative error than any previous equal temperaments in the 61-limit. It is the smallest EDO which is purely consistent[idiosyncratic term] in the 63-odd-limit (i.e. does not exceed 25% relative error on the first 63 harmonics of the harmonic series).
Prime harmonics
Harmonic | 3 | 5 | 7 | 9 | 11 | 13 | 15 | |
---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00002113 | +0.00002452 | +0.00001382 | +0.00004226 | -0.00003126 | -0.00004793 | +0.00004565 |
Relative (%) | +5.6 | +6.5 | +3.6 | +11.1 | -8.2 | -12.6 | +12.0 | |
Steps (reduced) |
5008182 (1848371) |
7336854 (1017232) |
8870711 (2551089) |
10016364 (536931) |
10931150 (1451717) |
11692690 (2213257) |
12345036 (2865603) |
Harmonic | 17 | 19 | 21 | 23 | 25 | 27 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -0.00001818 | -0.00003197 | +0.00003494 | +0.00006535 | +0.00004904 | +0.00006338 | +0.00008120 | +0.00000087 |
Relative (%) | -4.8 | -8.4 | +9.2 | +17.2 | +12.9 | +16.7 | +21.4 | +0.2 | |
Steps (reduced) |
12915610 (276366) |
13422648 (783404) |
13878893 (1239649) |
14293601 (1654357) |
14673708 (2034464) |
15024546 (2385302) |
15350302 (2711058) |
15654324 (3015080) |
Harmonic | 33 | 35 | 37 | 39 | 41 | 43 | 45 | 47 | |
---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -0.00001013 | +0.00003834 | -0.00001850 | -0.00002681 | +0.00009218 | -0.00002310 | +0.00006678 | +0.00001747 |
Relative (%) | -2.7 | +10.1 | -4.9 | -7.1 | +24.3 | -6.1 | +17.6 | +4.6 | |
Steps (reduced) |
15939332 (140277) |
16207565 (408510) |
16460888 (661833) |
16700872 (901817) |
16928852 (1129797) |
17145971 (1346916) |
17353218 (1554163) |
17551451 (1752396) |
Harmonic | 49 | 51 | 53 | 55 | 57 | 59 | 61 | 63 | |
---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00002763 | +0.00000295 | -0.00002258 | -0.00000674 | -0.00001084 | -0.00008220 | -0.00002937 | +0.00005607 |
Relative (%) | +7.3 | +0.8 | -5.9 | -1.8 | -2.9 | -21.6 | -7.7 | +14.8 | |
Steps (reduced) |
17741422 (1942367) |
17923792 (2124737) |
18099146 (2300091) |
18268004 (2468949) |
18430830 (2631775) |
18588040 (2788985) |
18740009 (2940954) |
18887075 (3088020) |