Height

From Xenharmonic Wiki
Revision as of 17:21, 6 September 2012 by Wikispaces>Sarzadoce (**Imported revision 362646078 - Original comment: **)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author Sarzadoce and made on 2012-09-06 17:21:35 UTC.
The original revision id was 362646078.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

=Definition:= 
A **height** is a function on an abelian group which maps elements to real numbers, yielding a type of complexity measurement. Since the (non-zero) rationals form an abelian group under multiplication, we can assign each element a height, and hence a complexity. While there is no concensus on the restrictions of a height, we will attempt to create a definition which is practical for musical purposes.

A height function H(q) on the rationals q should fulfill the following criteria:
# Given any constant C, there are finitely many elements q such that H(q) <= C.
# There is a unique constant K such that H(q) >= K, for all q.
# H(q) = H(1/q)

Since any rational q can be rewritten as a fraction n/d, we may sub this into the above equation to get H(n/d) = H(d/n). This relation is extremely useful - it tells us that we can switch n and d without any consequences on the outcome of the height.

If we have a function F(x) which is strictly increasing on the positive reals, then F(H(q)) will rank elements in the same order as H(q). We can therefore establish the following equivalence relation:
[[math]]
H(q) \equiv F(H(q))
[[math]]

=Examples:= 
|| Name: || H(n/d) || H(q) || H(q) simplified by equivalence relation ||
|| Benedetti Height || [[math]]
nd
[[math]] || [[math]]
2^T^1^(^q^)
[[math]] || [[math]]
T1(q)
[[math]] ||
|| Weil Height || [[math]]
max(n,d)
[[math]] || [[math]]
2^{(T1(q)+log_2(q))/2}
[[math]] || [[math]]
T1(q)+log_2(q)
[[math]] ||
|| ?? || [[math]]
n+d
[[math]] || [[math]]
2^{T1(q)/2} (q+1)/q^{1/2}
[[math]] || [[math]]
T1(q)+2log_2(q+1)-log_2(q)
[[math]] ||
||   ||   ||   ||   ||
||   ||   ||   ||   ||
Where T1(q) is the [[xenharmonic/Generalized Tenney Norms and Tp Interval Space#The%20Tenney%20Norm%20(T1%20norm)|tenney norm]] of q, in monzo form.

Original HTML content:

<html><head><title>Height</title></head><body><!-- ws:start:WikiTextHeadingRule:10:&lt;h1&gt; --><h1 id="toc0"><a name="Definition:"></a><!-- ws:end:WikiTextHeadingRule:10 -->Definition:</h1>
 A <strong>height</strong> is a function on an abelian group which maps elements to real numbers, yielding a type of complexity measurement. Since the (non-zero) rationals form an abelian group under multiplication, we can assign each element a height, and hence a complexity. While there is no concensus on the restrictions of a height, we will attempt to create a definition which is practical for musical purposes.<br />
<br />
A height function H(q) on the rationals q should fulfill the following criteria:<br />
<ol><li>Given any constant C, there are finitely many elements q such that H(q) &lt;= C.</li><li>There is a unique constant K such that H(q) &gt;= K, for all q.</li><li>H(q) = H(1/q)</li></ol><br />
Since any rational q can be rewritten as a fraction n/d, we may sub this into the above equation to get H(n/d) = H(d/n). This relation is extremely useful - it tells us that we can switch n and d without any consequences on the outcome of the height.<br />
<br />
If we have a function F(x) which is strictly increasing on the positive reals, then F(H(q)) will rank elements in the same order as H(q). We can therefore establish the following equivalence relation:<br />
<!-- ws:start:WikiTextMathRule:0:
[[math]]&lt;br/&gt;
H(q) \equiv F(H(q))&lt;br/&gt;[[math]]
 --><script type="math/tex">H(q) \equiv F(H(q))</script><!-- ws:end:WikiTextMathRule:0 --><br />
<br />
<!-- ws:start:WikiTextHeadingRule:12:&lt;h1&gt; --><h1 id="toc1"><a name="Examples:"></a><!-- ws:end:WikiTextHeadingRule:12 -->Examples:</h1>
 

<table class="wiki_table">
    <tr>
        <td>Name:<br />
</td>
        <td>H(n/d)<br />
</td>
        <td>H(q)<br />
</td>
        <td>H(q) simplified by equivalence relation<br />
</td>
    </tr>
    <tr>
        <td>Benedetti Height<br />
</td>
        <td><!-- ws:start:WikiTextMathRule:1:
[[math]]&lt;br/&gt;
nd&lt;br/&gt;[[math]]
 --><script type="math/tex">nd</script><!-- ws:end:WikiTextMathRule:1 --><br />
</td>
        <td><!-- ws:start:WikiTextMathRule:2:
[[math]]&lt;br/&gt;
2^T^1^(^q^)&lt;br/&gt;[[math]]
 --><script type="math/tex">2^T^1^(^q^)</script><!-- ws:end:WikiTextMathRule:2 --><br />
</td>
        <td><!-- ws:start:WikiTextMathRule:3:
[[math]]&lt;br/&gt;
T1(q)&lt;br/&gt;[[math]]
 --><script type="math/tex">T1(q)</script><!-- ws:end:WikiTextMathRule:3 --><br />
</td>
    </tr>
    <tr>
        <td>Weil Height<br />
</td>
        <td><!-- ws:start:WikiTextMathRule:4:
[[math]]&lt;br/&gt;
max(n,d)&lt;br/&gt;[[math]]
 --><script type="math/tex">max(n,d)</script><!-- ws:end:WikiTextMathRule:4 --><br />
</td>
        <td><!-- ws:start:WikiTextMathRule:5:
[[math]]&lt;br/&gt;
2^{(T1(q)+log_2(q))/2}&lt;br/&gt;[[math]]
 --><script type="math/tex">2^{(T1(q)+log_2(q))/2}</script><!-- ws:end:WikiTextMathRule:5 --><br />
</td>
        <td><!-- ws:start:WikiTextMathRule:6:
[[math]]&lt;br/&gt;
T1(q)+log_2(q)&lt;br/&gt;[[math]]
 --><script type="math/tex">T1(q)+log_2(q)</script><!-- ws:end:WikiTextMathRule:6 --><br />
</td>
    </tr>
    <tr>
        <td>??<br />
</td>
        <td><!-- ws:start:WikiTextMathRule:7:
[[math]]&lt;br/&gt;
n+d&lt;br/&gt;[[math]]
 --><script type="math/tex">n+d</script><!-- ws:end:WikiTextMathRule:7 --><br />
</td>
        <td><!-- ws:start:WikiTextMathRule:8:
[[math]]&lt;br/&gt;
2^{T1(q)/2} (q+1)/q^{1/2}&lt;br/&gt;[[math]]
 --><script type="math/tex">2^{T1(q)/2} (q+1)/q^{1/2}</script><!-- ws:end:WikiTextMathRule:8 --><br />
</td>
        <td><!-- ws:start:WikiTextMathRule:9:
[[math]]&lt;br/&gt;
T1(q)+2log_2(q+1)-log_2(q)&lt;br/&gt;[[math]]
 --><script type="math/tex">T1(q)+2log_2(q+1)-log_2(q)</script><!-- ws:end:WikiTextMathRule:9 --><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
</table>

Where T1(q) is the <a class="wiki_link" href="http://xenharmonic.wikispaces.com/Generalized%20Tenney%20Norms%20and%20Tp%20Interval%20Space#The%20Tenney%20Norm%20(T1%20norm)">tenney norm</a> of q, in monzo form.</body></html>