2547047edo
← 2547046edo | 2547047edo | 2547048edo → |
Despite being less practical than many smaller EDOs, it is a strong higher-limit system, especially in the 35-odd-limit and 36-OPSL. An interesting quirk, though, is that all prime harmonics up to 41 are tuned sharp except for 19 which is only slightly flat. Also, the only two prime factors of the number of notes per octave appear to be unusually close together.
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.000000 | +0.000008 | +0.000006 | +0.000032 | +0.000035 | +0.000055 | +0.000015 | -0.000014 | +0.000043 | +0.000038 | +0.000071 |
Relative (%) | +0.0 | +1.7 | +1.2 | +6.8 | +7.4 | +11.7 | +3.3 | -2.9 | +9.1 | +8.0 | +15.0 | |
Steps (reduced) |
2547047 (0) |
4036974 (1489927) |
5914060 (819966) |
7150465 (2056371) |
8811335 (1170194) |
9425194 (1784053) |
10410960 (222772) |
10819671 (631483) |
11521725 (1333537) |
12373506 (2185318) |
12618571 (2430383) |
Harmonic | 37 | 41 | 43 | 47 | 53 | 59 | 61 | 67 | 71 | 73 | 79 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.000204 | +0.000113 | -0.000172 | +0.000061 | +0.000184 | -0.000156 | +0.000121 | -0.000129 | +0.000023 | -0.000034 | +0.000074 |
Relative (%) | +43.3 | +23.9 | -36.5 | +12.9 | +39.0 | -33.1 | +25.7 | -27.4 | +4.9 | -7.3 | +15.7 | |
Steps (reduced) |
13268723 (533488) |
13645937 (910702) |
13820951 (1085716) |
14147799 (1412564) |
14589283 (1854048) |
14983368 (2248133) |
15105867 (2370632) |
15450614 (168332) |
15663695 (381413) |
15765774 (483492) |
16056026 (773744) |