1236edo

From Xenharmonic Wiki
Jump to navigation Jump to search
This page presents a novelty topic.

It may contain ideas which are less likely to find practical applications in music, or numbers or structures that are arbitrary or exceedingly small, large, or complex.

Novelty topics are often developed by a single person or a small group. As such, this page may also contain idiosyncratic terms, notation, or conceptual frameworks.

This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 1235edo 1236edo 1237edo →
Prime factorization 22 × 3 × 103
Step size 0.970874 ¢ 
Fifth 723\1236 (701.942 ¢) (→ 241\412)
Semitones (A1:m2) 117:93 (113.6 ¢ : 90.29 ¢)
Consistency limit 17
Distinct consistency limit 17

Template:EDO intro

1236edo is a zeta peak edo, though not zeta integral nor zeta gap. It is a strong 17-limit system and uniquely consistent through the 17-odd-limit, with a 17-limit comma basis of {2601/2600, 4096/4095, 5832/5831, 6656/6655, 9801/9800, 105644/105625}.

Prime harmonics

Approximation of prime harmonics in 1236edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.000 -0.013 +0.094 +0.106 +0.138 +0.249 -0.101 -0.426 -0.119 -0.451 -0.375
Relative (%) +0.0 -1.4 +9.7 +10.9 +14.3 +25.7 -10.4 -43.8 -12.3 -46.5 -38.7
Steps
(reduced)
1236
(0)
1959
(723)
2870
(398)
3470
(998)
4276
(568)
4574
(866)
5052
(108)
5250
(306)
5591
(647)
6004
(1060)
6123
(1179)

Divisors

1236 = 22 × 3 × 103, with subset edos 2, 3, 6, 12, 103, 206, 309, and 618. It is divisible by 12, and is an atomic system.