9L 5s

From Xenharmonic Wiki
Revision as of 04:12, 20 June 2016 by Wikispaces>Chartrekhan (**Imported revision 585825597 - Original comment: **)
Jump to navigation Jump to search

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author Chartrekhan and made on 2016-06-20 04:12:57 UTC.
The original revision id was 585825597.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

9L 5s refers to the structure of moment of symmetry scales with generators approximating 7/6, ranging from 2\9edo (three degrees of 9edo = 266¢) to 3\14 (three degrees of 14edo = 257¢). In the case of 14edo, L and s are the same size; in the case of 9edo, s becomes so small it disappears.

9L5s is third smallest MOS of [[Semiphore]].

||generator in degrees of an edo|| generator in cents||L in cents||s in cents||notes||
||3\14||257¢||86¢||86¢|| |L=s||
||8\37||259¢||97¢||65¢|| ||
||5\23||261¢||104¢||52¢||L=2s||
||7\32||262¢||113¢||38¢|| ||
||2\9||266¢||266¢||0¢||s=0||

Original HTML content:

<html><head><title>9L 5s</title></head><body>9L 5s refers to the structure of moment of symmetry scales with generators approximating 7/6, ranging from 2\9edo (three degrees of 9edo = 266¢) to 3\14 (three degrees of 14edo = 257¢). In the case of 14edo, L and s are the same size; in the case of 9edo, s becomes so small it disappears.<br />
<br />
9L5s is third smallest MOS of <a class="wiki_link" href="/Semiphore">Semiphore</a>.<br />
<br />


<table class="wiki_table">
    <tr>
        <td>generator in degrees of an edo<br />
</td>
        <td>generator in cents<br />
</td>
        <td>L in cents<br />
</td>
        <td>s in cents<br />
</td>
        <td>notes<br />
</td>
    </tr>
    <tr>
        <td>3\14<br />
</td>
        <td>257¢<br />
</td>
        <td>86¢<br />
</td>
        <td>86¢<br />
</td>
        <td>|L=s<br />
</td>
    </tr>
    <tr>
        <td>8\37<br />
</td>
        <td>259¢<br />
</td>
        <td>97¢<br />
</td>
        <td>65¢<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>5\23<br />
</td>
        <td>261¢<br />
</td>
        <td>104¢<br />
</td>
        <td>52¢<br />
</td>
        <td>L=2s<br />
</td>
    </tr>
    <tr>
        <td>7\32<br />
</td>
        <td>262¢<br />
</td>
        <td>113¢<br />
</td>
        <td>38¢<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>2\9<br />
</td>
        <td>266¢<br />
</td>
        <td>266¢<br />
</td>
        <td>0¢<br />
</td>
        <td>s=0<br />
</td>
    </tr>
</table>

</body></html>