35edo
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author phylingual and made on 2012-05-30 09:40:51 UTC.
- The original revision id was 340926438.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
35-tET or 35-[[xenharmonic/edo|EDO]] refers to a tuning system which divides the octave into 35 steps of approximately [[xenharmonic/cent|34.29¢]] each. As 35 is 5 times 7, 35edo allows for mixing the two smallest xenharmonic [[xenharmonic/macrotonal edos|macrotonal edos]]: [[xenharmonic/5edo|5edo]] and [[xenharmonic/7edo|7edo]]. A single degree of 35edo represents the difference between 7edo's narrow fifth of 685.71¢ and 5edo's wide fifth of 720¢. Because it includes 7edo, 35edo tunes the 29th harmonic with +1 cent of error. 35edo can also represent the 2.3.5.7.11.17 [[xenharmonic/Just intonation subgroups|subgroup]] and 2.9.5.7.11.17 subgroup, because of the accuracy of 9 and the flatness of all other subgroup generators (7/5 and 17/11 stand out, having less than 1 cent error). Therefore among whitewood tunings it is very versatile, you can switch between these different subgroups if you don't mind having to use two different 3/2s to reach the inconsistent 9 (a characteristic of whitewood tunings), and if you ignore [[xenharmonic/22edo|22edo]]'s more in-tune versions of 35edo MOS's and consistent representation of both subgroups. 35edo has the optimal patent val for [[xenharmonic/Greenwoodmic temperaments|greenwood]] and [[xenharmonic/Greenwoodmic temperaments#Secund|secund]] temperaments. A good beginning for start to play 35-EDO is with the Sub-diatonic scale, that is a [[xenharmonic/MOS|MOS]] of 3L2s: 9 4 9 9 4. =Intervals= (Bolded ratio indicates that the ratio is most accurately tuned by the given 35-edo interval.) || Degrees || Solfege || Cents value || Ratios in 2.5.7.11.17 subgroup || Ratios with flat 3 || Ratios with sharp 3 || Ratios with patent 9 || || 0 || do || 0 || **1/1** || (see comma table) || || || || 1 || du || 34.29 || **50/49**, **121/119**, 33/32 || **36/35** || 25/24 || **81/80** || || 2 || di || 68.57 || 128/125 || **25/24** || 81/80 || || || 3 || ra || 102.86 || **17/16** || **15/14** || **16/15** || **18/17** || || 4 || ru || 137.14 || || **12/11**, 16/15 || || || || 5 || ro || 171.43 || **11/10** || || 12/11 || **10/9** || || 6 || re || 205.71 || || || || **9/8** || || 7 || ri || 240 || **8/7** || || 7/6 || || || 8 || ma || 274.29 || **20/17** || **7/6** || || || || 9 || me || 308.57 || || **6/5** || || || || 10 || mu || 342.86 || **17/14** || || 6/5 || **11/9** || || 11 || mi || 377.14 || **5/4** || || || || || 12 || mo || 411.43 || **14/11** || || || || || 13 || fe || 445.71 || **22/17**, 32/25 || || || **9/7** || || 14 || fo || 480 || || || 4/3 || || || 15 || fa || 514.29 || || **4/3** || || || || 16 || fu || 548.57 || **11/8** || || || || || 17 || fi || 582.86 || **7/5** || **24/17** || 17/12 || || || 18 || se || 617.14 || **10/7** || **17/12** || 24/17 || || || 19 || su || 651.43 || **16/11** || || || || || 20 || so || 685.71 || || **3/2** || || || || 21 || sa || 720 || || || 3/2 || || || 22 || si || 754.29 || **17/11**, 25/16 || || || **14/9** || || 23 || lo || 788.57 || **11/7** || || || || || 24 || le || 822.86 || **8/5** || || || || || 25 || lu || 857.15 || || || 5/3 || **18/11** || || 26 || la || 891.43 || || **5/3** || || || || 27 || li || 925.71 || **17/10** || **12/7** || || || || 28 || ta || 960 || **7/4** || || || || || 29 || te || 994.29 || || || || **16/9** || || 30 || to || 1028.57 || **20/11** || || || **9/5** || || 31 || tu || 1062.86 || || **11/6**, 15/8 || || || || 32 || ti || 1097.14 || **32/17** || **28/15** || **15/8** || **17/9** || || 33 || de || 1131.43 || || || || || || 34 || da || 1165.71 || || || || || =Rank two temperaments= ||~ Periods per octave ||~ Generator ||~ Temperaments with flat 3/2 (patent val) ||~ <span style="display: block; text-align: center;">Temperaments with</span><span style="display: block; text-align: center;">sharp 3/2 (35b val)</span> || || 1 || 1\35 || || || || 1 || 2\35 || || || || 1 || 3\35 || || [[Ripple]] || || 1 || 4\35 || [[xenharmonic/Greenwoodmic temperaments#Secund|Secund]] || || || 1 || 6\35 |||| Messed-up [[Chromatic pairs#Baldy|Baldy]] || || 1 || 8\35 || || Messed-up [[Orwell]] || || 1 || 9\35 || [[xenharmonic/Myna|Myna]] || || || 1 || 11\35 || [[Magic family#Muggles|Muggles]] || || || 1 || 12\35 || || [[Avicennmic temperaments#Roman|Roman]] || || 1 || 13\35 || || [[xenharmonic/Sensipent family|Sensipent]] but //not// [[Sensi]] || || 1 || 16\35 || || || || 1 || 17\35 || || || || 5 || 1\35 || || [[Blackwood]] (favoring 7/6) || || 5 || 2\35 || || [[Blackwood]] (favoring 6/5 and 20/17) || || 5 || 3\35 || || [[Blackwood]] (favoring 5/4 and 17/14) || || 7 || 1\35 || [[xenharmonic/Apotome family|Whitewood]]/[[xenharmonic/Apotome family#Redwood|Redwood]] || || || 7 || 2\35 || [[xenharmonic/Greenwoodmic temperaments#Greenwood|Greenwood]] || || =<span style="background-color: #ffffff;">Scales</span>= == == ==<span style="background-color: #ffffff;">Commas</span>== 35EDO tempers out the following commas. (Note: This assumes the val <35 55 81 98 121 130|.) ||~ **Comma** ||~ **Monzo** ||~ **Value (Cents)** ||~ **Name 1** ||~ **Name 2** ||~ **Name 3** || ||= 2187/2048 || | -11 7 > ||> 113.69 ||= Apotome ||= Whitewood comma || || ||= 6561/6250 || | -1 8 -5 > ||> 84.07 ||= Ripple comma ||= || || ||= 10077696/9765625 || | 9 9 -10 > ||> 54.46 ||= Mynic comma ||= || || ||= 3125/3072 || | -10 -1 5 > ||> 29.61 ||= Small diesis ||= Magic comma || || ||= 405/392 || | -3 4 1 -2 > ||> 56.48 ||= Greenwoodma ||= || || ||= 16807/16384 || | -14 0 0 5 > ||> 44.13 ||= ||= || || ||= 525/512 || | -9 1 2 1 > ||> 43.41 ||= Avicennma ||= || || ||= 126/125 || | 1 2 -3 1 > ||> 13.79 ||= Starling comma ||= Septimal semicomma || || ||= 99/98 || | -1 2 0 -2 1 > ||> 17.58 ||= Mothwellsma ||= || || ||= 66/65 || | 1 1 -1 0 1 -1 > ||> 26.43 ||= ||= || || == == == ==
Original HTML content:
<html><head><title>35edo</title></head><body>35-tET or 35-<a class="wiki_link" href="http://xenharmonic.wikispaces.com/edo">EDO</a> refers to a tuning system which divides the octave into 35 steps of approximately <a class="wiki_link" href="http://xenharmonic.wikispaces.com/cent">34.29¢</a> each.<br /> <br /> As 35 is 5 times 7, 35edo allows for mixing the two smallest xenharmonic <a class="wiki_link" href="http://xenharmonic.wikispaces.com/macrotonal%20edos">macrotonal edos</a>: <a class="wiki_link" href="http://xenharmonic.wikispaces.com/5edo">5edo</a> and <a class="wiki_link" href="http://xenharmonic.wikispaces.com/7edo">7edo</a>. A single degree of 35edo represents the difference between 7edo's narrow fifth of 685.71¢ and 5edo's wide fifth of 720¢. Because it includes 7edo, 35edo tunes the 29th harmonic with +1 cent of error. 35edo can also represent the 2.3.5.7.11.17 <a class="wiki_link" href="http://xenharmonic.wikispaces.com/Just%20intonation%20subgroups">subgroup</a> and 2.9.5.7.11.17 subgroup, because of the accuracy of 9 and the flatness of all other subgroup generators (7/5 and 17/11 stand out, having less than 1 cent error). Therefore among whitewood tunings it is very versatile, you can switch between these different subgroups if you don't mind having to use two different 3/2s to reach the inconsistent 9 (a characteristic of whitewood tunings), and if you ignore <a class="wiki_link" href="http://xenharmonic.wikispaces.com/22edo">22edo</a>'s more in-tune versions of 35edo MOS's and consistent representation of both subgroups. 35edo has the optimal patent val for <a class="wiki_link" href="http://xenharmonic.wikispaces.com/Greenwoodmic%20temperaments">greenwood</a> and <a class="wiki_link" href="http://xenharmonic.wikispaces.com/Greenwoodmic%20temperaments#Secund">secund</a> temperaments.<br /> <br /> A good beginning for start to play 35-EDO is with the Sub-diatonic scale, that is a <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOS">MOS</a> of 3L2s: 9 4 9 9 4.<br /> <br /> <!-- ws:start:WikiTextHeadingRule:0:<h1> --><h1 id="toc0"><a name="Intervals"></a><!-- ws:end:WikiTextHeadingRule:0 -->Intervals</h1> <br /> (Bolded ratio indicates that the ratio is most accurately tuned by the given 35-edo interval.)<br /> <table class="wiki_table"> <tr> <td>Degrees<br /> </td> <td>Solfege<br /> </td> <td>Cents value<br /> </td> <td>Ratios in 2.5.7.11.17 subgroup<br /> </td> <td>Ratios with flat 3<br /> </td> <td>Ratios with sharp 3<br /> </td> <td>Ratios with patent 9<br /> </td> </tr> <tr> <td>0<br /> </td> <td>do<br /> </td> <td>0<br /> </td> <td><strong>1/1</strong><br /> </td> <td>(see comma table)<br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>1<br /> </td> <td>du<br /> </td> <td>34.29<br /> </td> <td><strong>50/49</strong>, <strong>121/119</strong>, 33/32<br /> </td> <td><strong>36/35</strong><br /> </td> <td>25/24<br /> </td> <td><strong>81/80</strong><br /> </td> </tr> <tr> <td>2<br /> </td> <td>di<br /> </td> <td>68.57<br /> </td> <td>128/125<br /> </td> <td><strong>25/24</strong><br /> </td> <td>81/80<br /> </td> <td><br /> </td> </tr> <tr> <td>3<br /> </td> <td>ra<br /> </td> <td>102.86<br /> </td> <td><strong>17/16</strong><br /> </td> <td><strong>15/14</strong><br /> </td> <td><strong>16/15</strong><br /> </td> <td><strong>18/17</strong><br /> </td> </tr> <tr> <td>4<br /> </td> <td>ru<br /> </td> <td>137.14<br /> </td> <td><br /> </td> <td><strong>12/11</strong>, 16/15<br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>5<br /> </td> <td>ro<br /> </td> <td>171.43<br /> </td> <td><strong>11/10</strong><br /> </td> <td><br /> </td> <td>12/11<br /> </td> <td><strong>10/9</strong><br /> </td> </tr> <tr> <td>6<br /> </td> <td>re<br /> </td> <td>205.71<br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><strong>9/8</strong><br /> </td> </tr> <tr> <td>7<br /> </td> <td>ri<br /> </td> <td>240<br /> </td> <td><strong>8/7</strong><br /> </td> <td><br /> </td> <td>7/6<br /> </td> <td><br /> </td> </tr> <tr> <td>8<br /> </td> <td>ma<br /> </td> <td>274.29<br /> </td> <td><strong>20/17</strong><br /> </td> <td><strong>7/6</strong><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>9<br /> </td> <td>me<br /> </td> <td>308.57<br /> </td> <td><br /> </td> <td><strong>6/5</strong><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>10<br /> </td> <td>mu<br /> </td> <td>342.86<br /> </td> <td><strong>17/14</strong><br /> </td> <td><br /> </td> <td>6/5<br /> </td> <td><strong>11/9</strong><br /> </td> </tr> <tr> <td>11<br /> </td> <td>mi<br /> </td> <td>377.14<br /> </td> <td><strong>5/4</strong><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>12<br /> </td> <td>mo<br /> </td> <td>411.43<br /> </td> <td><strong>14/11</strong><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>13<br /> </td> <td>fe<br /> </td> <td>445.71<br /> </td> <td><strong>22/17</strong>, 32/25<br /> </td> <td><br /> </td> <td><br /> </td> <td><strong>9/7</strong><br /> </td> </tr> <tr> <td>14<br /> </td> <td>fo<br /> </td> <td>480<br /> </td> <td><br /> </td> <td><br /> </td> <td>4/3<br /> </td> <td><br /> </td> </tr> <tr> <td>15<br /> </td> <td>fa<br /> </td> <td>514.29<br /> </td> <td><br /> </td> <td><strong>4/3</strong><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>16<br /> </td> <td>fu<br /> </td> <td>548.57<br /> </td> <td><strong>11/8</strong><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>17<br /> </td> <td>fi<br /> </td> <td>582.86<br /> </td> <td><strong>7/5</strong><br /> </td> <td><strong>24/17</strong><br /> </td> <td>17/12<br /> </td> <td><br /> </td> </tr> <tr> <td>18<br /> </td> <td>se<br /> </td> <td>617.14<br /> </td> <td><strong>10/7</strong><br /> </td> <td><strong>17/12</strong><br /> </td> <td>24/17<br /> </td> <td><br /> </td> </tr> <tr> <td>19<br /> </td> <td>su<br /> </td> <td>651.43<br /> </td> <td><strong>16/11</strong><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>20<br /> </td> <td>so<br /> </td> <td>685.71<br /> </td> <td><br /> </td> <td><strong>3/2</strong><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>21<br /> </td> <td>sa<br /> </td> <td>720<br /> </td> <td><br /> </td> <td><br /> </td> <td>3/2<br /> </td> <td><br /> </td> </tr> <tr> <td>22<br /> </td> <td>si<br /> </td> <td>754.29<br /> </td> <td><strong>17/11</strong>, 25/16<br /> </td> <td><br /> </td> <td><br /> </td> <td><strong>14/9</strong><br /> </td> </tr> <tr> <td>23<br /> </td> <td>lo<br /> </td> <td>788.57<br /> </td> <td><strong>11/7</strong><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>24<br /> </td> <td>le<br /> </td> <td>822.86<br /> </td> <td><strong>8/5</strong><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>25<br /> </td> <td>lu<br /> </td> <td>857.15<br /> </td> <td><br /> </td> <td><br /> </td> <td>5/3<br /> </td> <td><strong>18/11</strong><br /> </td> </tr> <tr> <td>26<br /> </td> <td>la<br /> </td> <td>891.43<br /> </td> <td><br /> </td> <td><strong>5/3</strong><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>27<br /> </td> <td>li<br /> </td> <td>925.71<br /> </td> <td><strong>17/10</strong><br /> </td> <td><strong>12/7</strong><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>28<br /> </td> <td>ta<br /> </td> <td>960<br /> </td> <td><strong>7/4</strong><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>29<br /> </td> <td>te<br /> </td> <td>994.29<br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><strong>16/9</strong><br /> </td> </tr> <tr> <td>30<br /> </td> <td>to<br /> </td> <td>1028.57<br /> </td> <td><strong>20/11</strong><br /> </td> <td><br /> </td> <td><br /> </td> <td><strong>9/5</strong><br /> </td> </tr> <tr> <td>31<br /> </td> <td>tu<br /> </td> <td>1062.86<br /> </td> <td><br /> </td> <td><strong>11/6</strong>, 15/8<br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>32<br /> </td> <td>ti<br /> </td> <td>1097.14<br /> </td> <td><strong>32/17</strong><br /> </td> <td><strong>28/15</strong><br /> </td> <td><strong>15/8</strong><br /> </td> <td><strong>17/9</strong><br /> </td> </tr> <tr> <td>33<br /> </td> <td>de<br /> </td> <td>1131.43<br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>34<br /> </td> <td>da<br /> </td> <td>1165.71<br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> </tr> </table> <!-- ws:start:WikiTextHeadingRule:2:<h1> --><h1 id="toc1"><a name="Rank two temperaments"></a><!-- ws:end:WikiTextHeadingRule:2 -->Rank two temperaments</h1> <br /> <table class="wiki_table"> <tr> <th>Periods<br /> per octave<br /> </th> <th>Generator<br /> </th> <th>Temperaments with<br /> flat 3/2 (patent val)<br /> </th> <th><span style="display: block; text-align: center;">Temperaments with</span><span style="display: block; text-align: center;">sharp 3/2 (35b val)</span><br /> </th> </tr> <tr> <td>1<br /> </td> <td>1\35<br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>1<br /> </td> <td>2\35<br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>1<br /> </td> <td>3\35<br /> </td> <td><br /> </td> <td><a class="wiki_link" href="/Ripple">Ripple</a><br /> </td> </tr> <tr> <td>1<br /> </td> <td>4\35<br /> </td> <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Greenwoodmic%20temperaments#Secund">Secund</a><br /> </td> <td><br /> </td> </tr> <tr> <td>1<br /> </td> <td>6\35<br /> </td> <td colspan="2">Messed-up <a class="wiki_link" href="/Chromatic%20pairs#Baldy">Baldy</a><br /> </td> </tr> <tr> <td>1<br /> </td> <td>8\35<br /> </td> <td><br /> </td> <td>Messed-up <a class="wiki_link" href="/Orwell">Orwell</a><br /> </td> </tr> <tr> <td>1<br /> </td> <td>9\35<br /> </td> <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Myna">Myna</a><br /> </td> <td><br /> </td> </tr> <tr> <td>1<br /> </td> <td>11\35<br /> </td> <td><a class="wiki_link" href="/Magic%20family#Muggles">Muggles</a><br /> </td> <td><br /> </td> </tr> <tr> <td>1<br /> </td> <td>12\35<br /> </td> <td><br /> </td> <td><a class="wiki_link" href="/Avicennmic%20temperaments#Roman">Roman</a><br /> </td> </tr> <tr> <td>1<br /> </td> <td>13\35<br /> </td> <td><br /> </td> <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Sensipent%20family">Sensipent</a> but <em>not</em> <a class="wiki_link" href="/Sensi">Sensi</a><br /> </td> </tr> <tr> <td>1<br /> </td> <td>16\35<br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>1<br /> </td> <td>17\35<br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td>5<br /> </td> <td>1\35<br /> </td> <td><br /> </td> <td><a class="wiki_link" href="/Blackwood">Blackwood</a> (favoring 7/6)<br /> </td> </tr> <tr> <td>5<br /> </td> <td>2\35<br /> </td> <td><br /> </td> <td><a class="wiki_link" href="/Blackwood">Blackwood</a> (favoring 6/5 and 20/17)<br /> </td> </tr> <tr> <td>5<br /> </td> <td>3\35<br /> </td> <td><br /> </td> <td><a class="wiki_link" href="/Blackwood">Blackwood</a> (favoring 5/4 and 17/14)<br /> </td> </tr> <tr> <td>7<br /> </td> <td>1\35<br /> </td> <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Apotome%20family">Whitewood</a>/<a class="wiki_link" href="http://xenharmonic.wikispaces.com/Apotome%20family#Redwood">Redwood</a><br /> </td> <td><br /> </td> </tr> <tr> <td>7<br /> </td> <td>2\35<br /> </td> <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Greenwoodmic%20temperaments#Greenwood">Greenwood</a><br /> </td> <td><br /> </td> </tr> </table> <!-- ws:start:WikiTextHeadingRule:4:<h1> --><h1 id="toc2"><a name="Scales"></a><!-- ws:end:WikiTextHeadingRule:4 --><span style="background-color: #ffffff;">Scales</span></h1> <!-- ws:start:WikiTextHeadingRule:6:<h2> --><h2 id="toc3"><!-- ws:end:WikiTextHeadingRule:6 --> </h2> <!-- ws:start:WikiTextHeadingRule:8:<h2> --><h2 id="toc4"><a name="Scales-Commas"></a><!-- ws:end:WikiTextHeadingRule:8 --><span style="background-color: #ffffff;">Commas</span></h2> 35EDO tempers out the following commas. (Note: This assumes the val <35 55 81 98 121 130|.)<br /> <table class="wiki_table"> <tr> <th><strong>Comma</strong><br /> </th> <th><strong>Monzo</strong><br /> </th> <th><strong>Value (Cents)</strong><br /> </th> <th><strong>Name 1</strong><br /> </th> <th><strong>Name 2</strong><br /> </th> <th><strong>Name 3</strong><br /> </th> </tr> <tr> <td style="text-align: center;">2187/2048<br /> </td> <td>| -11 7 ><br /> </td> <td style="text-align: right;">113.69<br /> </td> <td style="text-align: center;">Apotome<br /> </td> <td style="text-align: center;">Whitewood comma<br /> </td> <td><br /> </td> </tr> <tr> <td style="text-align: center;">6561/6250<br /> </td> <td>| -1 8 -5 ><br /> </td> <td style="text-align: right;">84.07<br /> </td> <td style="text-align: center;">Ripple comma<br /> </td> <td style="text-align: center;"><br /> </td> <td><br /> </td> </tr> <tr> <td style="text-align: center;">10077696/9765625<br /> </td> <td>| 9 9 -10 ><br /> </td> <td style="text-align: right;">54.46<br /> </td> <td style="text-align: center;">Mynic comma<br /> </td> <td style="text-align: center;"><br /> </td> <td><br /> </td> </tr> <tr> <td style="text-align: center;">3125/3072<br /> </td> <td>| -10 -1 5 ><br /> </td> <td style="text-align: right;">29.61<br /> </td> <td style="text-align: center;">Small diesis<br /> </td> <td style="text-align: center;">Magic comma<br /> </td> <td><br /> </td> </tr> <tr> <td style="text-align: center;">405/392<br /> </td> <td>| -3 4 1 -2 ><br /> </td> <td style="text-align: right;">56.48<br /> </td> <td style="text-align: center;">Greenwoodma<br /> </td> <td style="text-align: center;"><br /> </td> <td><br /> </td> </tr> <tr> <td style="text-align: center;">16807/16384<br /> </td> <td>| -14 0 0 5 ><br /> </td> <td style="text-align: right;">44.13<br /> </td> <td style="text-align: center;"><br /> </td> <td style="text-align: center;"><br /> </td> <td><br /> </td> </tr> <tr> <td style="text-align: center;">525/512<br /> </td> <td>| -9 1 2 1 ><br /> </td> <td style="text-align: right;">43.41<br /> </td> <td style="text-align: center;">Avicennma<br /> </td> <td style="text-align: center;"><br /> </td> <td><br /> </td> </tr> <tr> <td style="text-align: center;">126/125<br /> </td> <td>| 1 2 -3 1 ><br /> </td> <td style="text-align: right;">13.79<br /> </td> <td style="text-align: center;">Starling comma<br /> </td> <td style="text-align: center;">Septimal semicomma<br /> </td> <td><br /> </td> </tr> <tr> <td style="text-align: center;">99/98<br /> </td> <td>| -1 2 0 -2 1 ><br /> </td> <td style="text-align: right;">17.58<br /> </td> <td style="text-align: center;">Mothwellsma<br /> </td> <td style="text-align: center;"><br /> </td> <td><br /> </td> </tr> <tr> <td style="text-align: center;">66/65<br /> </td> <td>| 1 1 -1 0 1 -1 ><br /> </td> <td style="text-align: right;">26.43<br /> </td> <td style="text-align: center;"><br /> </td> <td style="text-align: center;"><br /> </td> <td><br /> </td> </tr> </table> <!-- ws:start:WikiTextHeadingRule:10:<h2> --><h2 id="toc5"><!-- ws:end:WikiTextHeadingRule:10 --> </h2> <br /> <!-- ws:start:WikiTextHeadingRule:12:<h2> --><h2 id="toc6"><!-- ws:end:WikiTextHeadingRule:12 --> </h2> </body></html>