102edo

From Xenharmonic Wiki
Revision as of 13:27, 29 December 2016 by Wikispaces>xenwolf (**Imported revision 602896474 - Original comment: **)
Jump to navigation Jump to search

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author xenwolf and made on 2016-12-29 13:27:39 UTC.
The original revision id was 602896474.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

**102edo** is the [[equal division of the octave]] into 102 steps of size 11.765 [[cent]]s each. In the [[5-limit]] it [[tempering out|tempers out]] the same [[comma]]s (2048/2025, 15625/15552, 20000/19683) as [[34edo]]. In the [[7-limit]] it tempers out 686/675 and 1029/1024; in the [[11-limit]] 385/384, 441/440 and 4000/3993; in the [[13-limit]] 91/90 and 169/168; in the [[17-limit]] 136/135 and 154/153; and in the [[19-limit]] 133/132 and 190/189. It is the [[optimal patent val]] for 13-limit [[Diaschismic family#Echidnic|echidnic temperament]], and the rank five temperament tempering out 91/90.
===13-limit Echidnic=== 
|| 2 || 23.529 ||
|| 4 || 47.059 ||
|| 7 || 82.353 ||
|| 9 || 105.882 ||
|| 11 || 129.412 ||
|| 13 || 152.941 ||
|| 16 || 188.235 ||
|| 18 || 211.765 ||
|| 20 || 235.294 ||
|| 22 || 258.824 ||
|| 24 || 282.353 ||
|| 27 || 317.647 ||
|| 29 || 341.176 ||
|| 31 || 364.706 ||
|| 33 || 388.235 ||
|| 35 || 411.765 ||
|| 38 || 447.059 ||
|| 40 || 470.588 ||
|| 42 || 494.117 ||
|| 44 || 517.647 ||
|| 47 || 552.941 ||
|| 49 || 576.471 ||

Original HTML content:

<html><head><title>102edo</title></head><body><strong>102edo</strong> is the <a class="wiki_link" href="/equal%20division%20of%20the%20octave">equal division of the octave</a> into 102 steps of size 11.765 <a class="wiki_link" href="/cent">cent</a>s each. In the <a class="wiki_link" href="/5-limit">5-limit</a> it <a class="wiki_link" href="/tempering%20out">tempers out</a> the same <a class="wiki_link" href="/comma">comma</a>s (2048/2025, 15625/15552, 20000/19683) as <a class="wiki_link" href="/34edo">34edo</a>. In the <a class="wiki_link" href="/7-limit">7-limit</a> it tempers out 686/675 and 1029/1024; in the <a class="wiki_link" href="/11-limit">11-limit</a> 385/384, 441/440 and 4000/3993; in the <a class="wiki_link" href="/13-limit">13-limit</a> 91/90 and 169/168; in the <a class="wiki_link" href="/17-limit">17-limit</a> 136/135 and 154/153; and in the <a class="wiki_link" href="/19-limit">19-limit</a> 133/132 and 190/189. It is the <a class="wiki_link" href="/optimal%20patent%20val">optimal patent val</a> for 13-limit <a class="wiki_link" href="/Diaschismic%20family#Echidnic">echidnic temperament</a>, and the rank five temperament tempering out 91/90.<br />
<!-- ws:start:WikiTextHeadingRule:0:&lt;h3&gt; --><h3 id="toc0"><a name="x--13-limit Echidnic"></a><!-- ws:end:WikiTextHeadingRule:0 -->13-limit Echidnic</h3>
 

<table class="wiki_table">
    <tr>
        <td>2<br />
</td>
        <td>23.529<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>47.059<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td>82.353<br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td>105.882<br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td>129.412<br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td>152.941<br />
</td>
    </tr>
    <tr>
        <td>16<br />
</td>
        <td>188.235<br />
</td>
    </tr>
    <tr>
        <td>18<br />
</td>
        <td>211.765<br />
</td>
    </tr>
    <tr>
        <td>20<br />
</td>
        <td>235.294<br />
</td>
    </tr>
    <tr>
        <td>22<br />
</td>
        <td>258.824<br />
</td>
    </tr>
    <tr>
        <td>24<br />
</td>
        <td>282.353<br />
</td>
    </tr>
    <tr>
        <td>27<br />
</td>
        <td>317.647<br />
</td>
    </tr>
    <tr>
        <td>29<br />
</td>
        <td>341.176<br />
</td>
    </tr>
    <tr>
        <td>31<br />
</td>
        <td>364.706<br />
</td>
    </tr>
    <tr>
        <td>33<br />
</td>
        <td>388.235<br />
</td>
    </tr>
    <tr>
        <td>35<br />
</td>
        <td>411.765<br />
</td>
    </tr>
    <tr>
        <td>38<br />
</td>
        <td>447.059<br />
</td>
    </tr>
    <tr>
        <td>40<br />
</td>
        <td>470.588<br />
</td>
    </tr>
    <tr>
        <td>42<br />
</td>
        <td>494.117<br />
</td>
    </tr>
    <tr>
        <td>44<br />
</td>
        <td>517.647<br />
</td>
    </tr>
    <tr>
        <td>47<br />
</td>
        <td>552.941<br />
</td>
    </tr>
    <tr>
        <td>49<br />
</td>
        <td>576.471<br />
</td>
    </tr>
</table>

</body></html>