Hendecatonic MOS

From Xenharmonic Wiki
Revision as of 19:38, 24 November 2011 by Wikispaces>Andrew_Heathwaite (**Imported revision 278880582 - Original comment: **)
Jump to navigation Jump to search

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author Andrew_Heathwaite and made on 2011-11-24 19:38:31 UTC.
The original revision id was 278880582.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

[[image:hendecatonic_MOS_scales_PING.png]]
Hendecatonic (11-tone) [[MOSScales|MOS Scales]] come in many varieties and are effective as chromatic scales out of which albitonic (diatonic-like) subsets can be taken. As 11 is a prime number, each Hendecatonic MOS Scale has the octave as a period, rather than some division of the octave like 600¢. It is a simple matter to retune a Halberstadt keyboard to a Hendecatonic MOS Scale, with the 2/1 occurring after 11 keys, or by skipping a key so the 2/1 occurs after 12 keys. The diagram above shows the 10 generator ranges ("Regions") where Hendecatonic MOS Scales occur.

See: [[chromatic pairs]]

=The 10 Generator Ranges= 

==[[1L 10s]] aka 1+10== 

Range: 0¢ to 109.091¢ (1\[[11edo]])

Some 1+10 scales:
[[Valentine]][11] in [[46edo]]: 3 3 3 3 3 3 3 3 3 16 3
[[Nautilus]][11] in [[29edo]]: 2 2 2 2 9 2 2 2 2 2 2
[[Octacot]][11] in [[41edo]]: 3 3 3 3 3 3 3 3 3 3 11

==[[10L 1s]] aka 10+1== 

Range: 109.091¢ (1\11edo) to 120¢ (1\[[10edo]])

Some 10+1 scales:
[[Miracle]][11] in [[72edo]]: 7 7 7 7 7 7 7 2 7 7 7

==[[6L 5s]] aka 6+5== 

Range: 200¢ (1\[[6edo]]) to 218.182¢ (2\11edo)

Some 6+5 scales:
[[baldy11|Baldy]][11] in [[47edo]]: 7 1 7 1 7 1 7 7 1 7 1
[[machine11|Machine]][11] in [[28edo]]: 3 2 3 2 3 2 3 3 2 3 2

==[[5L 6s]] aka 5+6== 

Range: 218.182¢ (2\11edo) to 240¢ (1\[[5edo]])

Some 5+6 scales:
[[Gorgo]][11]/[[shoe11|Shoe]][11] in [[37edo]]: 5 2 5 2 5 2 5 2 2 5 2
[[Cynder]][11]/[[Mothra]][11]/[[Slendric]][11] in [[31edo]]: 1 5 1 5 1 5 1 5 1 1 5
[[Rodan]][11] in [[41edo]]: 1 7 1 7 1 7 1 7 1 1 7

==[[4L 7s]] aka 4+7== 

Range: 300¢ (1\[[4edo]]) to 327.273¢ (3\11edo)

Some 4+7 scales:
[[Myna]][11] in [[89edo]]: 3 3 17 3 3 17 3 3 17 3 17
[[Keemun]][11]/[[Hanson]][11]/[[Catakleismic]][11] in [[72edo]]
[[Orgone]][11] in [[26edo]]: 2 3 2 3 2 2 3 2 2 3 2

==[[7L 4s]] aka 7+4== 

Range: 327.273¢ (3\11edo) to 342.857¢ (2\7edo)

... more to come...

Original HTML content:

<html><head><title>Hendecatonic MOS</title></head><body><!-- ws:start:WikiTextLocalImageRule:14:&lt;img src=&quot;/file/view/hendecatonic_MOS_scales_PING.png/278861814/hendecatonic_MOS_scales_PING.png&quot; alt=&quot;&quot; title=&quot;&quot; /&gt; --><img src="/file/view/hendecatonic_MOS_scales_PING.png/278861814/hendecatonic_MOS_scales_PING.png" alt="hendecatonic_MOS_scales_PING.png" title="hendecatonic_MOS_scales_PING.png" /><!-- ws:end:WikiTextLocalImageRule:14 --><br />
Hendecatonic (11-tone) <a class="wiki_link" href="/MOSScales">MOS Scales</a> come in many varieties and are effective as chromatic scales out of which albitonic (diatonic-like) subsets can be taken. As 11 is a prime number, each Hendecatonic MOS Scale has the octave as a period, rather than some division of the octave like 600¢. It is a simple matter to retune a Halberstadt keyboard to a Hendecatonic MOS Scale, with the 2/1 occurring after 11 keys, or by skipping a key so the 2/1 occurs after 12 keys. The diagram above shows the 10 generator ranges (&quot;Regions&quot;) where Hendecatonic MOS Scales occur.<br />
<br />
See: <a class="wiki_link" href="/chromatic%20pairs">chromatic pairs</a><br />
<br />
<!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="The 10 Generator Ranges"></a><!-- ws:end:WikiTextHeadingRule:0 -->The 10 Generator Ranges</h1>
 <br />
<!-- ws:start:WikiTextHeadingRule:2:&lt;h2&gt; --><h2 id="toc1"><a name="The 10 Generator Ranges-1L 10s aka 1+10"></a><!-- ws:end:WikiTextHeadingRule:2 --><a class="wiki_link" href="/1L%2010s">1L 10s</a> aka 1+10</h2>
 <br />
Range: 0¢ to 109.091¢ (1\<a class="wiki_link" href="/11edo">11edo</a>)<br />
<br />
Some 1+10 scales:<br />
<a class="wiki_link" href="/Valentine">Valentine</a>[11] in <a class="wiki_link" href="/46edo">46edo</a>: 3 3 3 3 3 3 3 3 3 16 3<br />
<a class="wiki_link" href="/Nautilus">Nautilus</a>[11] in <a class="wiki_link" href="/29edo">29edo</a>: 2 2 2 2 9 2 2 2 2 2 2<br />
<a class="wiki_link" href="/Octacot">Octacot</a>[11] in <a class="wiki_link" href="/41edo">41edo</a>: 3 3 3 3 3 3 3 3 3 3 11<br />
<br />
<!-- ws:start:WikiTextHeadingRule:4:&lt;h2&gt; --><h2 id="toc2"><a name="The 10 Generator Ranges-10L 1s aka 10+1"></a><!-- ws:end:WikiTextHeadingRule:4 --><a class="wiki_link" href="/10L%201s">10L 1s</a> aka 10+1</h2>
 <br />
Range: 109.091¢ (1\11edo) to 120¢ (1\<a class="wiki_link" href="/10edo">10edo</a>)<br />
<br />
Some 10+1 scales:<br />
<a class="wiki_link" href="/Miracle">Miracle</a>[11] in <a class="wiki_link" href="/72edo">72edo</a>: 7 7 7 7 7 7 7 2 7 7 7<br />
<br />
<!-- ws:start:WikiTextHeadingRule:6:&lt;h2&gt; --><h2 id="toc3"><a name="The 10 Generator Ranges-6L 5s aka 6+5"></a><!-- ws:end:WikiTextHeadingRule:6 --><a class="wiki_link" href="/6L%205s">6L 5s</a> aka 6+5</h2>
 <br />
Range: 200¢ (1\<a class="wiki_link" href="/6edo">6edo</a>) to 218.182¢ (2\11edo)<br />
<br />
Some 6+5 scales:<br />
<a class="wiki_link" href="/baldy11">Baldy</a>[11] in <a class="wiki_link" href="/47edo">47edo</a>: 7 1 7 1 7 1 7 7 1 7 1<br />
<a class="wiki_link" href="/machine11">Machine</a>[11] in <a class="wiki_link" href="/28edo">28edo</a>: 3 2 3 2 3 2 3 3 2 3 2<br />
<br />
<!-- ws:start:WikiTextHeadingRule:8:&lt;h2&gt; --><h2 id="toc4"><a name="The 10 Generator Ranges-5L 6s aka 5+6"></a><!-- ws:end:WikiTextHeadingRule:8 --><a class="wiki_link" href="/5L%206s">5L 6s</a> aka 5+6</h2>
 <br />
Range: 218.182¢ (2\11edo) to 240¢ (1\<a class="wiki_link" href="/5edo">5edo</a>)<br />
<br />
Some 5+6 scales:<br />
<a class="wiki_link" href="/Gorgo">Gorgo</a>[11]/<a class="wiki_link" href="/shoe11">Shoe</a>[11] in <a class="wiki_link" href="/37edo">37edo</a>: 5 2 5 2 5 2 5 2 2 5 2<br />
<a class="wiki_link" href="/Cynder">Cynder</a>[11]/<a class="wiki_link" href="/Mothra">Mothra</a>[11]/<a class="wiki_link" href="/Slendric">Slendric</a>[11] in <a class="wiki_link" href="/31edo">31edo</a>: 1 5 1 5 1 5 1 5 1 1 5<br />
<a class="wiki_link" href="/Rodan">Rodan</a>[11] in <a class="wiki_link" href="/41edo">41edo</a>: 1 7 1 7 1 7 1 7 1 1 7<br />
<br />
<!-- ws:start:WikiTextHeadingRule:10:&lt;h2&gt; --><h2 id="toc5"><a name="The 10 Generator Ranges-4L 7s aka 4+7"></a><!-- ws:end:WikiTextHeadingRule:10 --><a class="wiki_link" href="/4L%207s">4L 7s</a> aka 4+7</h2>
 <br />
Range: 300¢ (1\<a class="wiki_link" href="/4edo">4edo</a>) to 327.273¢ (3\11edo)<br />
<br />
Some 4+7 scales:<br />
<a class="wiki_link" href="/Myna">Myna</a>[11] in <a class="wiki_link" href="/89edo">89edo</a>: 3 3 17 3 3 17 3 3 17 3 17<br />
<a class="wiki_link" href="/Keemun">Keemun</a>[11]/<a class="wiki_link" href="/Hanson">Hanson</a>[11]/<a class="wiki_link" href="/Catakleismic">Catakleismic</a>[11] in <a class="wiki_link" href="/72edo">72edo</a><br />
<a class="wiki_link" href="/Orgone">Orgone</a>[11] in <a class="wiki_link" href="/26edo">26edo</a>: 2 3 2 3 2 2 3 2 2 3 2<br />
<br />
<!-- ws:start:WikiTextHeadingRule:12:&lt;h2&gt; --><h2 id="toc6"><a name="The 10 Generator Ranges-7L 4s aka 7+4"></a><!-- ws:end:WikiTextHeadingRule:12 --><a class="wiki_link" href="/7L%204s">7L 4s</a> aka 7+4</h2>
 <br />
Range: 327.273¢ (3\11edo) to 342.857¢ (2\7edo)<br />
<br />
... more to come...</body></html>