Height
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author Sarzadoce and made on 2012-09-06 17:26:26 UTC.
- The original revision id was 362649630.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
=Definition:= A **height** is a function on an abelian group which maps elements to real numbers, yielding a type of complexity measurement. Since the (non-zero) rationals form an abelian group under multiplication, we can assign each element a height, and hence a complexity. While there is no concensus on the restrictions of a height, we will attempt to create a definition which is practical for musical purposes. A height function H(q) on the rationals q should fulfill the following criteria: # Given any constant C, there are finitely many elements q such that H(q) <= C. # There is a unique constant K such that H(q) >= K, for all q. # H(q) = H(1/q) Since any rational q can be rewritten as a fraction n/d, we may sub this into the above equation to get H(n/d) = H(d/n). This relation is extremely useful - it tells us that we can switch n and d without any consequences on the outcome of the height. If we have a function F(x) which is strictly increasing on the positive reals, then F(H(q)) will rank elements in the same order as H(q). We can therefore establish the following equivalence relation: [[math]] H(q) \equiv F(H(q)) [[math]] =Examples:= || Name: || H(n/d) || H(q) || H(q) simplified by equivalence relation || || Benedetti Height || [[math]] nd [[math]] || [[math]] 2^T^1^(^q^) [[math]] || [[math]] T1(q) [[math]] || || Weil Height || [[math]] max(n,d) [[math]] || [[math]] 2^{(T1(q)+|log_2(q)|)/2} [[math]] || [[math]] T1(q)+|log_2(q)| [[math]] || || ?? || [[math]] n+d [[math]] || [[math]] 2^{T1(q)/2} (q+1)/q^{1/2} [[math]] || [[math]] T1(q)+2log_2(q+1)-log_2(q) [[math]] || || || || || || || || || || || Where T1(q) is the [[xenharmonic/Generalized Tenney Norms and Tp Interval Space#The%20Tenney%20Norm%20(T1%20norm)|tenney norm]] of q, in monzo form.
Original HTML content:
<html><head><title>Height</title></head><body><!-- ws:start:WikiTextHeadingRule:10:<h1> --><h1 id="toc0"><a name="Definition:"></a><!-- ws:end:WikiTextHeadingRule:10 -->Definition:</h1> A <strong>height</strong> is a function on an abelian group which maps elements to real numbers, yielding a type of complexity measurement. Since the (non-zero) rationals form an abelian group under multiplication, we can assign each element a height, and hence a complexity. While there is no concensus on the restrictions of a height, we will attempt to create a definition which is practical for musical purposes.<br /> <br /> A height function H(q) on the rationals q should fulfill the following criteria:<br /> <ol><li>Given any constant C, there are finitely many elements q such that H(q) <= C.</li><li>There is a unique constant K such that H(q) >= K, for all q.</li><li>H(q) = H(1/q)</li></ol><br /> Since any rational q can be rewritten as a fraction n/d, we may sub this into the above equation to get H(n/d) = H(d/n). This relation is extremely useful - it tells us that we can switch n and d without any consequences on the outcome of the height.<br /> <br /> If we have a function F(x) which is strictly increasing on the positive reals, then F(H(q)) will rank elements in the same order as H(q). We can therefore establish the following equivalence relation:<br /> <!-- ws:start:WikiTextMathRule:0: [[math]]<br/> H(q) \equiv F(H(q))<br/>[[math]] --><script type="math/tex">H(q) \equiv F(H(q))</script><!-- ws:end:WikiTextMathRule:0 --><br /> <br /> <!-- ws:start:WikiTextHeadingRule:12:<h1> --><h1 id="toc1"><a name="Examples:"></a><!-- ws:end:WikiTextHeadingRule:12 -->Examples:</h1> <table class="wiki_table"> <tr> <td>Name:<br /> </td> <td>H(n/d)<br /> </td> <td>H(q)<br /> </td> <td>H(q) simplified by equivalence relation<br /> </td> </tr> <tr> <td>Benedetti Height<br /> </td> <td><!-- ws:start:WikiTextMathRule:1: [[math]]<br/> nd<br/>[[math]] --><script type="math/tex">nd</script><!-- ws:end:WikiTextMathRule:1 --><br /> </td> <td><!-- ws:start:WikiTextMathRule:2: [[math]]<br/> 2^T^1^(^q^)<br/>[[math]] --><script type="math/tex">2^T^1^(^q^)</script><!-- ws:end:WikiTextMathRule:2 --><br /> </td> <td><!-- ws:start:WikiTextMathRule:3: [[math]]<br/> T1(q)<br/>[[math]] --><script type="math/tex">T1(q)</script><!-- ws:end:WikiTextMathRule:3 --><br /> </td> </tr> <tr> <td>Weil Height<br /> </td> <td><!-- ws:start:WikiTextMathRule:4: [[math]]<br/> max(n,d)<br/>[[math]] --><script type="math/tex">max(n,d)</script><!-- ws:end:WikiTextMathRule:4 --><br /> </td> <td><!-- ws:start:WikiTextMathRule:5: [[math]]<br/> 2^{(T1(q)+|log_2(q)|)/2}<br/>[[math]] --><script type="math/tex">2^{(T1(q)+|log_2(q)|)/2}</script><!-- ws:end:WikiTextMathRule:5 --><br /> </td> <td><!-- ws:start:WikiTextMathRule:6: [[math]]<br/> T1(q)+|log_2(q)|<br/>[[math]] --><script type="math/tex">T1(q)+|log_2(q)|</script><!-- ws:end:WikiTextMathRule:6 --><br /> </td> </tr> <tr> <td>??<br /> </td> <td><!-- ws:start:WikiTextMathRule:7: [[math]]<br/> n+d<br/>[[math]] --><script type="math/tex">n+d</script><!-- ws:end:WikiTextMathRule:7 --><br /> </td> <td><!-- ws:start:WikiTextMathRule:8: [[math]]<br/> 2^{T1(q)/2} (q+1)/q^{1/2}<br/>[[math]] --><script type="math/tex">2^{T1(q)/2} (q+1)/q^{1/2}</script><!-- ws:end:WikiTextMathRule:8 --><br /> </td> <td><!-- ws:start:WikiTextMathRule:9: [[math]]<br/> T1(q)+2log_2(q+1)-log_2(q)<br/>[[math]] --><script type="math/tex">T1(q)+2log_2(q+1)-log_2(q)</script><!-- ws:end:WikiTextMathRule:9 --><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> </tr> <tr> <td><br /> </td> <td><br /> </td> <td><br /> </td> <td><br /> </td> </tr> </table> Where T1(q) is the <a class="wiki_link" href="http://xenharmonic.wikispaces.com/Generalized%20Tenney%20Norms%20and%20Tp%20Interval%20Space#The%20Tenney%20Norm%20(T1%20norm)">tenney norm</a> of q, in monzo form.</body></html>