Height
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author mbattaglia1 and made on 2013-08-31 06:49:09 UTC.
- The original revision id was 447781960.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
=Definition:= A **height** is a function on members of an algebraically defined object which maps elements to real numbers, yielding a type of complexity measurement. For example we can assign each element of the positive rational numbers a height, and hence a complexity. While there is no consensus on the restrictions of a height, we will attempt to create a definition for positive rational numbers which is practical for musical purposes. A height function H(q) on the positive rationals q should fulfill the following criteria: # Given any constant C, there are finitely many elements q such that H(q) ≤ C. # H(q) is bounded below by H(1), so that H(q) ≥ H(1) for all q. # H(q) = H(1/q) # H(q^n) ≥ H(q) for any non-negative integer n If we have a function F(x) which is strictly increasing on the positive reals, then F(H(q)) will rank elements in the same order as H(q). We can therefore establish the following equivalence relation: [[math]] H \left( {q} \right) \equiv F \left( {H} \left( {q} \right) \right) [[math]] A **semi-height** is a function which does not obey criteria #1 above in the strictest sense, so that there is a rational number q ≠ 1 such that H(q) = H(1), resulting in an equivalence relation on its elements. An example would be octave-equivalence, where two ratios p and q are considered equivalent if the following is true: [[math]] 2^{-v_2 \left( {p} \right)} p = 2^{-v_2 \left( {q} \right)} q [[math]] Or equivalently, if n has any integer solutions: [[math]] p = 2^n q [[math]] If the above condition is met, we may then establish the following equivalence relation: [[math]] p \equiv q [[math]] By changing the base of the exponent to a value other than 2, you can set up completely different equivalence relations. Replacing the 2 with a 3 yields tritave-equivalence, for example. ====== ====== =Examples of Height Functions:= || __Name:__ || __Type:__ || __H(n/d):__ || __H(q):__ || __H(q) simplified by equivalence relation:__ || || [[Benedetti Height|Benedetti height]] (or [[Tenney Height]]) || Height || [[math]] n d [[math]] || [[math]] 2^{\large{\|q\|_{T1}}} [[math]] || [[math]] \|q\|_{T1} [[math]] || || Weil Height || Height || [[math]] \max \left( {n , d} \right) [[math]] || [[math]] 2^{\large{\frac{1}{2}(\|q\|_{T1} + \mid \log_2(\mid q \mid)\mid)}} [[math]] || [[math]] \|q\|_{T1} + \mid \log_2(\mid q \mid)\mid [[math]] || || Arithmetic Height || Height || [[math]] n + d [[math]] || [[math]] \dfrac {\left( {q + 1} \right)} {\sqrt{q}} 2^{\large{\frac{1}{2} {\|q\|_{T1}}}} [[math]] || [[math]] \|q\|_{T1} + 2 \log_2 \left( {q + 1} \right) - \log_2 \left( {q} \right) [[math]] || || Harmonic Height || Semi-Height || [[math]] \dfrac {n d} {n + d} [[math]] || [[math]] \dfrac {\sqrt{q}} {\left( {q + 1} \right)} 2^{\large{\frac{1}{2} {\|q\|_{T1}}}} [[math]] || [[math]] \|q\|_{T1} - 2 \log_2 \left( {q + 1} \right) + \log_2 \left( {q} \right) [[math]] || || [[Kees Height]] || Semi-Height || [[math]] \max \left( {2^{-v_2 \left( {n} \right)} n , 2^{-v_2 \left( {d} \right)} d} \right) [[math]] || [[math]] 2^{\large{\left(\frac{1}{2}\|2^{-v_2 \left( {q} \right)} q\|_{T1} + \mid \log_2(2) - v_2(q) \mid \right)}} [[math]] || [[math]] \|{2^{-v_2 \left( {q} \right)} q}\|_{T1} + | \log_2 \left( {q} \right) - v_2 \left( {q} \right) | [[math]] || Where ||q||<span style="font-size: 80%; vertical-align: sub;">T1</span> is the [[xenharmonic/Generalized Tenney Norms and Tp Interval Space#The%20Tenney%20Norm%20(T1%20norm)|tenney norm]] of q in monzo form, and v<span style="vertical-align: sub;">p</span>(x) is the [[http://en.wikipedia.org/wiki/P-adic_order|p-adic valuation]] of x. Some useful identities: [[math]] n = \exp \left( \ln \left( {2} \right) \dfrac {T1 \left( {q} \right) + \log_2 \left( {q} \right)} {2} \right) [[math]] [[math]] d = \exp \left( \ln \left( {2} \right) \dfrac {T1 \left( {q} \right) - \log_2 \left( {q} \right)} {2} \right) [[math]] [[math]] n d = 2^{T1 \left( {q} \right)} [[math]] Height functions can also be put on the points of [[http://planetmath.org/encyclopedia/QuasiProjectiveVariety.html|projective varieties]]. Since [[Abstract regular temperament|abstract regular temperaments]] can be identified with rational points on [[http://en.wikipedia.org/wiki/Grassmannian|Grassmann varieties]], complexity measures of regular temperaments are also height functions.
Original HTML content:
<html><head><title>Height</title></head><body><!-- ws:start:WikiTextHeadingRule:22:<h1> --><h1 id="toc0"><a name="Definition:"></a><!-- ws:end:WikiTextHeadingRule:22 -->Definition:</h1> A <strong>height</strong> is a function on members of an algebraically defined object which maps elements to real numbers, yielding a type of complexity measurement. For example we can assign each element of the positive rational numbers a height, and hence a complexity. While there is no consensus on the restrictions of a height, we will attempt to create a definition for positive rational numbers which is practical for musical purposes.<br /> <br /> A height function H(q) on the positive rationals q should fulfill the following criteria:<br /> <ol><li>Given any constant C, there are finitely many elements q such that H(q) ≤ C.</li><li>H(q) is bounded below by H(1), so that H(q) ≥ H(1) for all q.</li><li>H(q) = H(1/q)</li><li>H(q^n) ≥ H(q) for any non-negative integer n</li></ol><br /> If we have a function F(x) which is strictly increasing on the positive reals, then F(H(q)) will rank elements in the same order as H(q). We can therefore establish the following equivalence relation:<br /> <!-- ws:start:WikiTextMathRule:0: [[math]]<br/> H \left( {q} \right) \equiv F \left( {H} \left( {q} \right) \right)<br/>[[math]] --><script type="math/tex">H \left( {q} \right) \equiv F \left( {H} \left( {q} \right) \right)</script><!-- ws:end:WikiTextMathRule:0 --><br /> <br /> A <strong>semi-height</strong> is a function which does not obey criteria #1 above in the strictest sense, so that there is a rational number q ≠ 1 such that H(q) = H(1), resulting in an equivalence relation on its elements. An example would be octave-equivalence, where two ratios p and q are considered equivalent if the following is true:<br /> <!-- ws:start:WikiTextMathRule:1: [[math]]<br/> 2^{-v_2 \left( {p} \right)} p = 2^{-v_2 \left( {q} \right)} q<br/>[[math]] --><script type="math/tex">2^{-v_2 \left( {p} \right)} p = 2^{-v_2 \left( {q} \right)} q</script><!-- ws:end:WikiTextMathRule:1 --><br /> <br /> Or equivalently, if n has any integer solutions:<br /> <!-- ws:start:WikiTextMathRule:2: [[math]]<br/> p = 2^n q<br/>[[math]] --><script type="math/tex">p = 2^n q</script><!-- ws:end:WikiTextMathRule:2 --><br /> <br /> If the above condition is met, we may then establish the following equivalence relation:<br /> <!-- ws:start:WikiTextMathRule:3: [[math]]<br/> p \equiv q<br/>[[math]] --><script type="math/tex">p \equiv q</script><!-- ws:end:WikiTextMathRule:3 --><br /> <br /> By changing the base of the exponent to a value other than 2, you can set up completely different equivalence relations. Replacing the 2 with a 3 yields tritave-equivalence, for example.<br /> <!-- ws:start:WikiTextHeadingRule:24:<h6> --><h6 id="toc1"><!-- ws:end:WikiTextHeadingRule:24 --> </h6> <!-- ws:start:WikiTextHeadingRule:26:<h1> --><h1 id="toc2"><a name="Examples of Height Functions:"></a><!-- ws:end:WikiTextHeadingRule:26 -->Examples of Height Functions:</h1> <table class="wiki_table"> <tr> <td><u>Name:</u><br /> </td> <td><u>Type:</u><br /> </td> <td><u>H(n/d):</u><br /> </td> <td><u>H(q):</u><br /> </td> <td><u>H(q) simplified by equivalence relation:</u><br /> </td> </tr> <tr> <td><a class="wiki_link" href="/Benedetti%20Height">Benedetti height</a><br /> (or <a class="wiki_link" href="/Tenney%20Height">Tenney Height</a>)<br /> </td> <td>Height<br /> </td> <td><!-- ws:start:WikiTextMathRule:4: [[math]]<br/> n d<br/>[[math]] --><script type="math/tex">n d</script><!-- ws:end:WikiTextMathRule:4 --><br /> </td> <td><!-- ws:start:WikiTextMathRule:5: [[math]]<br/> 2^{\large{\|q\|_{T1}}}<br/>[[math]] --><script type="math/tex">2^{\large{\|q\|_{T1}}}</script><!-- ws:end:WikiTextMathRule:5 --><br /> </td> <td><!-- ws:start:WikiTextMathRule:6: [[math]]<br/> \|q\|_{T1}<br/>[[math]] --><script type="math/tex">\|q\|_{T1}</script><!-- ws:end:WikiTextMathRule:6 --><br /> </td> </tr> <tr> <td>Weil Height<br /> </td> <td>Height<br /> </td> <td><!-- ws:start:WikiTextMathRule:7: [[math]]<br/> \max \left( {n , d} \right)<br/>[[math]] --><script type="math/tex">\max \left( {n , d} \right)</script><!-- ws:end:WikiTextMathRule:7 --><br /> </td> <td><!-- ws:start:WikiTextMathRule:8: [[math]]<br/> 2^{\large{\frac{1}{2}(\|q\|_{T1} + \mid \log_2(\mid q \mid)\mid)}}<br/>[[math]] --><script type="math/tex">2^{\large{\frac{1}{2}(\|q\|_{T1} + \mid \log_2(\mid q \mid)\mid)}}</script><!-- ws:end:WikiTextMathRule:8 --><br /> </td> <td><!-- ws:start:WikiTextMathRule:9: [[math]]<br/> \|q\|_{T1} + \mid \log_2(\mid q \mid)\mid<br/>[[math]] --><script type="math/tex">\|q\|_{T1} + \mid \log_2(\mid q \mid)\mid</script><!-- ws:end:WikiTextMathRule:9 --><br /> </td> </tr> <tr> <td>Arithmetic Height<br /> </td> <td>Height<br /> </td> <td><!-- ws:start:WikiTextMathRule:10: [[math]]<br/> n + d<br/>[[math]] --><script type="math/tex">n + d</script><!-- ws:end:WikiTextMathRule:10 --><br /> </td> <td><!-- ws:start:WikiTextMathRule:11: [[math]]<br/> \dfrac {\left( {q + 1} \right)} {\sqrt{q}} 2^{\large{\frac{1}{2} {\|q\|_{T1}}}}<br/>[[math]] --><script type="math/tex">\dfrac {\left( {q + 1} \right)} {\sqrt{q}} 2^{\large{\frac{1}{2} {\|q\|_{T1}}}}</script><!-- ws:end:WikiTextMathRule:11 --><br /> </td> <td><!-- ws:start:WikiTextMathRule:12: [[math]]<br/> \|q\|_{T1} + 2 \log_2 \left( {q + 1} \right) - \log_2 \left( {q} \right)<br/>[[math]] --><script type="math/tex">\|q\|_{T1} + 2 \log_2 \left( {q + 1} \right) - \log_2 \left( {q} \right)</script><!-- ws:end:WikiTextMathRule:12 --><br /> </td> </tr> <tr> <td>Harmonic Height<br /> </td> <td>Semi-Height<br /> </td> <td><!-- ws:start:WikiTextMathRule:13: [[math]]<br/> \dfrac {n d} {n + d}<br/>[[math]] --><script type="math/tex">\dfrac {n d} {n + d}</script><!-- ws:end:WikiTextMathRule:13 --><br /> </td> <td><!-- ws:start:WikiTextMathRule:14: [[math]]<br/> \dfrac {\sqrt{q}} {\left( {q + 1} \right)} 2^{\large{\frac{1}{2} {\|q\|_{T1}}}}<br/>[[math]] --><script type="math/tex">\dfrac {\sqrt{q}} {\left( {q + 1} \right)} 2^{\large{\frac{1}{2} {\|q\|_{T1}}}}</script><!-- ws:end:WikiTextMathRule:14 --><br /> </td> <td><!-- ws:start:WikiTextMathRule:15: [[math]]<br/> \|q\|_{T1} - 2 \log_2 \left( {q + 1} \right) + \log_2 \left( {q} \right)<br/>[[math]] --><script type="math/tex">\|q\|_{T1} - 2 \log_2 \left( {q + 1} \right) + \log_2 \left( {q} \right)</script><!-- ws:end:WikiTextMathRule:15 --><br /> </td> </tr> <tr> <td><a class="wiki_link" href="/Kees%20Height">Kees Height</a><br /> </td> <td>Semi-Height<br /> </td> <td><!-- ws:start:WikiTextMathRule:16: [[math]]<br/> \max \left( {2^{-v_2 \left( {n} \right)} n ,<br /> 2^{-v_2 \left( {d} \right)} d} \right)<br/>[[math]] --><script type="math/tex">\max \left( {2^{-v_2 \left( {n} \right)} n , 2^{-v_2 \left( {d} \right)} d} \right)</script><!-- ws:end:WikiTextMathRule:16 --><br /> </td> <td><!-- ws:start:WikiTextMathRule:17: [[math]]<br/> 2^{\large{\left(\frac{1}{2}\|2^{-v_2 \left( {q} \right)} q\|_{T1} + \mid \log_2(2) - v_2(q) \mid \right)}}<br/>[[math]] --><script type="math/tex">2^{\large{\left(\frac{1}{2}\|2^{-v_2 \left( {q} \right)} q\|_{T1} + \mid \log_2(2) - v_2(q) \mid \right)}}</script><!-- ws:end:WikiTextMathRule:17 --><br /> </td> <td><!-- ws:start:WikiTextMathRule:18: [[math]]<br/> \|{2^{-v_2 \left( {q} \right)} q}\|_{T1} + | \log_2 \left( {q} \right) - v_2 \left( {q} \right) |<br/>[[math]] --><script type="math/tex">\|{2^{-v_2 \left( {q} \right)} q}\|_{T1} + | \log_2 \left( {q} \right) - v_2 \left( {q} \right) |</script><!-- ws:end:WikiTextMathRule:18 --><br /> </td> </tr> </table> Where ||q||<span style="font-size: 80%; vertical-align: sub;">T1</span> is the <a class="wiki_link" href="http://xenharmonic.wikispaces.com/Generalized%20Tenney%20Norms%20and%20Tp%20Interval%20Space#The%20Tenney%20Norm%20(T1%20norm)">tenney norm</a> of q in monzo form, and v<span style="vertical-align: sub;">p</span>(x) is the <a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/P-adic_order" rel="nofollow">p-adic valuation</a> of x.<br /> <br /> Some useful identities:<br /> <!-- ws:start:WikiTextMathRule:19: [[math]]<br/> n = \exp \left( \ln \left( {2} \right) \dfrac {T1 \left( {q} \right) + \log_2 \left( {q} \right)} {2} \right)<br/>[[math]] --><script type="math/tex">n = \exp \left( \ln \left( {2} \right) \dfrac {T1 \left( {q} \right) + \log_2 \left( {q} \right)} {2} \right)</script><!-- ws:end:WikiTextMathRule:19 --><br /> <!-- ws:start:WikiTextMathRule:20: [[math]]<br/> d = \exp \left( \ln \left( {2} \right) \dfrac {T1 \left( {q} \right) - \log_2 \left( {q} \right)} {2} \right)<br/>[[math]] --><script type="math/tex">d = \exp \left( \ln \left( {2} \right) \dfrac {T1 \left( {q} \right) - \log_2 \left( {q} \right)} {2} \right)</script><!-- ws:end:WikiTextMathRule:20 --><br /> <!-- ws:start:WikiTextMathRule:21: [[math]]<br/> n d = 2^{T1 \left( {q} \right)}<br/>[[math]] --><script type="math/tex">n d = 2^{T1 \left( {q} \right)}</script><!-- ws:end:WikiTextMathRule:21 --><br /> <br /> Height functions can also be put on the points of <a class="wiki_link_ext" href="http://planetmath.org/encyclopedia/QuasiProjectiveVariety.html" rel="nofollow">projective varieties</a>. Since <a class="wiki_link" href="/Abstract%20regular%20temperament">abstract regular temperaments</a> can be identified with rational points on <a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Grassmannian" rel="nofollow">Grassmann varieties</a>, complexity measures of regular temperaments are also height functions.</body></html>