157edt

Revision as of 09:06, 5 October 2024 by BudjarnLambeth (talk | contribs) (Intervals harmonics)
← 156edt 157edt 158edt →
Prime factorization 157 (prime)
Step size 12.1144 ¢ 
Octave 99\157edt (1199.32 ¢)
Consistency limit 12
Distinct consistency limit 12

Division of the third harmonic into 157 equal parts (157EDT) is related to 99edo, but with the 3/1 rather than the 2/1 being just. The octave is about 0.6781 cents compressed and the step size is about 12.1144 cents. It is consistent to the 12-integer-limit. In comparison, 99edo is only consistent up to the 10-integer-limit. 157edt is notable for it's excellent 5/3, as a convergent to log3(5), and can be used effectively both with and without twos.

Intervals

Steps Cents Hekts Approximate ratios
0 0 0 1/1
1 12.1 8.3
2 24.2 16.6
3 36.3 24.8 47/46, 48/47, 49/48, 50/49
4 48.5 33.1 36/35, 37/36
5 60.6 41.4 29/28, 57/55
6 72.7 49.7 24/23, 49/47
7 84.8 58 21/20
8 96.9 66.2 37/35, 55/52
9 109 74.5 33/31, 49/46
10 121.1 82.8 44/41
11 133.3 91.1 27/25
12 145.4 99.4 25/23, 37/34
13 157.5 107.6 23/21, 57/52
14 169.6 115.9 32/29, 43/39, 54/49
15 181.7 124.2 10/9
16 193.8 132.5 19/17, 47/42
17 205.9 140.8
18 218.1 149 17/15, 42/37
19 230.2 157.3 8/7
20 242.3 165.6 23/20
21 254.4 173.9 22/19, 51/44
22 266.5 182.2 7/6
23 278.6 190.4 27/23, 47/40
24 290.7 198.7 58/49
25 302.9 207 25/21, 56/47
26 315 215.3 6/5
27 327.1 223.6 29/24
28 339.2 231.8 28/23, 45/37
29 351.3 240.1 38/31, 49/40
30 363.4 248.4 37/30, 58/47
31 375.5 256.7 36/29, 41/33, 46/37
32 387.7 265 5/4
33 399.8 273.2 34/27
34 411.9 281.5 33/26, 52/41
35 424 289.8 23/18
36 436.1 298.1 9/7
37 448.2 306.4 35/27, 57/44
38 460.3 314.6 30/23, 47/36
39 472.5 322.9 46/35
40 484.6 331.2 41/31, 45/34
41 496.7 339.5 4/3
42 508.8 347.8 51/38, 55/41
43 520.9 356.1 27/20, 50/37
44 533 364.3 34/25, 49/36
45 545.1 372.6 37/27
46 557.3 380.9 40/29
47 569.4 389.2 25/18, 57/41
48 581.5 397.5 7/5
49 593.6 405.7 31/22
50 605.7 414 44/31
51 617.8 422.3 10/7
52 629.9 430.6 36/25
53 642.1 438.9 29/20, 42/29
54 654.2 447.1 35/24, 54/37
55 666.3 455.4 25/17, 47/32
56 678.4 463.7 37/25
57 690.5 472
58 702.6 480.3 3/2
59 714.7 488.5
60 726.9 496.8 35/23
61 739 505.1 23/15, 49/32
62 751.1 513.4 54/35
63 763.2 521.7
64 775.3 529.9 36/23
65 787.4 538.2 41/26, 52/33
66 799.5 546.5 27/17, 46/29
67 811.7 554.8
68 823.8 563.1 37/23
69 835.9 571.3 47/29
70 848 579.6 31/19, 49/30
71 860.1 587.9 23/14
72 872.2 596.2 43/26, 48/29
73 884.3 604.5 5/3
74 896.5 612.7 47/28, 52/31
75 908.6 621 49/29
76 920.7 629.3
77 932.8 637.6 12/7
78 944.9 645.9 19/11
79 957 654.1 33/19, 40/23
80 969.1 662.4 7/4
81 981.3 670.7 37/21
82 993.4 679 55/31
83 1005.5 687.3
84 1017.6 695.5 9/5
85 1029.7 703.8 29/16
86 1041.8 712.1 42/23
87 1053.9 720.4 57/31
88 1066.1 728.7 37/20, 50/27
89 1078.2 736.9 41/22
90 1090.3 745.2
91 1102.4 753.5 17/9
92 1114.5 761.8 40/21
93 1126.6 770.1 23/12
94 1138.8 778.3 56/29
95 1150.9 786.6 35/18
96 1163 794.9 45/23, 47/24
97 1175.1 803.2
98 1187.2 811.5
99 1199.3 819.7 2/1
100 1211.4 828
101 1223.6 836.3
102 1235.7 844.6 49/24, 51/25
103 1247.8 852.9 37/18
104 1259.9 861.1 29/14
105 1272 869.4 25/12
106 1284.1 877.7 21/10
107 1296.2 886 55/26
108 1308.4 894.3 49/23
109 1320.5 902.5 15/7
110 1332.6 910.8 41/19, 54/25
111 1344.7 919.1 50/23
112 1356.8 927.4 46/21
113 1368.9 935.7
114 1381 943.9 20/9
115 1393.2 952.2 38/17
116 1405.3 960.5 9/4
117 1417.4 968.8 34/15
118 1429.5 977.1
119 1441.6 985.4 23/10
120 1453.7 993.6 44/19
121 1465.8 1001.9 7/3
122 1478 1010.2 47/20, 54/23
123 1490.1 1018.5 26/11
124 1502.2 1026.8 50/21
125 1514.3 1035 12/5
126 1526.4 1043.3 29/12
127 1538.5 1051.6
128 1550.6 1059.9 49/20
129 1562.8 1068.2 37/15
130 1574.9 1076.4
131 1587 1084.7 5/2
132 1599.1 1093
133 1611.2 1101.3
134 1623.3 1109.6 23/9
135 1635.4 1117.8 18/7
136 1647.6 1126.1 44/17, 57/22
137 1659.7 1134.4
138 1671.8 1142.7 21/8
139 1683.9 1151 37/14, 45/17
140 1696 1159.2
141 1708.1 1167.5 51/19
142 1720.2 1175.8 27/10
143 1732.4 1184.1 49/18
144 1744.5 1192.4 52/19
145 1756.6 1200.6
146 1768.7 1208.9 25/9
147 1780.8 1217.2
148 1792.9 1225.5 31/11
149 1805 1233.8
150 1817.2 1242 20/7
151 1829.3 1250.3 23/8
152 1841.4 1258.6 55/19
153 1853.5 1266.9 35/12
154 1865.6 1275.2 47/16
155 1877.7 1283.4
156 1889.8 1291.7
157 1902 1300 3/1

Harmonics

Approximation of harmonics in 157edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -0.68 +0.00 -1.36 -0.01 -0.68 -1.03 -2.03 +0.00 -0.69 +3.91 -1.36
Relative (%) -5.6 +0.0 -11.2 -0.1 -5.6 -8.5 -16.8 +0.0 -5.7 +32.3 -11.2
Steps
(reduced)
99
(99)
157
(0)
198
(41)
230
(73)
256
(99)
278
(121)
297
(140)
314
(0)
329
(15)
343
(29)
355
(41)
Approximation of harmonics in 157edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +5.44 -1.71 -0.01 -2.71 +1.36 -0.68 +2.63 -1.37 -1.03 +3.23 -1.04
Relative (%) +44.9 -14.1 -0.1 -22.4 +11.2 -5.6 +21.7 -11.3 -8.5 +26.7 -8.6
Steps
(reduced)
367
(53)
377
(63)
387
(73)
396
(82)
405
(91)
413
(99)
421
(107)
428
(114)
435
(121)
442
(128)
448
(134)

See also