124edo
← 123edo | 124edo | 125edo → |
124edo is the equal division of the octave into 124 parts of 9.6774 cents each. It is closely related to 31edo, but the patent vals differ on the mapping for 3. It tempers out 2048/2025 (diaschisma) and 19073486328125/18075490334784 in the 5-limit. Using the patent val, it tempers out 3136/3125, 4000/3969, and 33614/32805 in the 7-limit; 385/384, 1232/1215, 1331/1323, and 3773/3750 in the 11-limit; 196/195, 364/363, 572/567, 625/624, and 1001/1000 in the 13-limit. Note that although its sharp fifth is slightly closer to just, both fifths are about equally off in both directions, and its 9th harmonic is especially accurate as a result, so it can be considered a dual-fifths system, in which it performs very well in the 2.9.5.7.11.13.17.19.23.37 subgroup (AKA the dual-fifth no-31's 37-limit), which is arguably the right way to analyze its approximations of JI. Also interesting is that one may want to double the number of notes to add a fifth closer to just, but this causes the relative errors of other primes to double leading to inconsistencies, so its most reasonable and capable conceptualization seems to be that of a dual-fifth system.
Harmonics
Harmonic | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | 25 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +4.50 | +0.78 | -1.08 | -0.68 | +0.29 | +1.41 | -4.40 | +1.50 | +2.49 | +3.41 | +0.76 | +1.57 |
Relative (%) | +46.5 | +8.1 | -11.2 | -7.1 | +3.0 | +14.5 | -45.4 | +15.5 | +25.7 | +35.3 | +7.8 | +16.2 | |
Steps (reduced) |
197 (73) |
288 (40) |
348 (100) |
393 (21) |
429 (57) |
459 (87) |
484 (112) |
507 (11) |
527 (31) |
545 (49) |
561 (65) |
576 (80) |
Harmonic | 27 | 29 | 31 | 33 | 35 | 37 | 39 | 41 | 43 | 45 | 47 | 49 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +3.81 | -3.77 | -3.10 | +4.79 | -0.30 | +0.27 | -3.77 | -3.26 | +1.39 | +0.10 | +2.24 | -2.17 |
Relative (%) | +39.4 | -39.0 | -32.0 | +49.5 | -3.1 | +2.8 | -39.0 | -33.6 | +14.3 | +1.0 | +23.1 | -22.4 | |
Steps (reduced) |
590 (94) |
602 (106) |
614 (118) |
626 (6) |
636 (16) |
646 (26) |
655 (35) |
664 (44) |
673 (53) |
681 (61) |
689 (69) |
696 (76) |
Intervals
Step | Cents | Ratio | JI Ratio Approximations |
---|---|---|---|
0 | 0.0 | 1.0 | 1/1 |
1 | 9.6774 | 1.0056 | |
2 | 19.3548 | 1.0112 | 65/64 |
3 | 29.0323 | 1.0169 | 65/64 |
4 | 38.7097 | 1.0226 | 65/64, 33/32 |
5 | 48.3871 | 1.0283 | 33/32 |
6 | 58.0645 | 1.0341 | 33/32, 24/23 |
7 | 67.7419 | 1.0399 | 24/23, 23/22, 67/64, 22/21, 33/32 |
8 | 77.4194 | 1.0457 | 23/22, 67/64, 22/21, 24/23, 21/20, 20/19 |
9 | 87.0968 | 1.0516 | 20/19, 21/20, 19/18, 22/21, 67/64, 23/22, 18/17, 24/23 |
10 | 96.7742 | 1.0575 | 18/17, 19/18, 20/19, 17/16, 21/20, 16/15 |
11 | 106.4516 | 1.0634 | 17/16, 16/15, 18/17, 19/18, 15/14 |
12 | 116.129 | 1.0694 | 15/14, 16/15, 17/16, 14/13, 69/64 |
13 | 125.8065 | 1.0754 | 14/13, 69/64, 15/14, 13/12, 16/15 |
14 | 135.4839 | 1.0814 | 13/12, 69/64, 14/13, 25/23, 12/11 |
15 | 145.1613 | 1.0875 | 25/23, 12/11, 13/12, 35/32, 23/21, 69/64 |
16 | 154.8387 | 1.0936 | 35/32, 23/21, 12/11, 11/10, 25/23 |
17 | 164.5161 | 1.0997 | 11/10, 23/21, 21/19, 35/32, 12/11, 71/64 |
18 | 174.1935 | 1.1059 | 21/19, 71/64, 10/9, 11/10 |
19 | 183.871 | 1.1121 | 10/9, 71/64, 19/17, 21/19 |
20 | 193.5484 | 1.1183 | 19/17, 9/8, 10/9, 71/64 |
21 | 203.2258 | 1.1246 | 9/8, 26/23, 19/17, 17/15 |
22 | 212.9032 | 1.1309 | 26/23, 17/15, 25/22, 9/8, 73/64 |
23 | 222.5806 | 1.1372 | 25/22, 73/64, 17/15, 8/7, 26/23 |
24 | 232.2581 | 1.1436 | 8/7, 73/64, 23/20, 25/22, 15/13, 17/15 |
25 | 241.9355 | 1.15 | 23/20, 15/13, 37/32, 8/7, 22/19, 73/64 |
26 | 251.6129 | 1.1564 | 37/32, 22/19, 15/13, 23/20, 7/6 |
27 | 261.2903 | 1.1629 | 7/6, 22/19, 37/32, 75/64, 15/13 |
28 | 270.9677 | 1.1694 | 75/64, 7/6, 27/23, 20/17 |
29 | 280.6452 | 1.176 | 20/17, 27/23, 75/64, 13/11, 7/6 |
30 | 290.3226 | 1.1826 | 13/11, 19/16, 20/17, 25/21, 27/23, 75/64 |
31 | 300.0 | 1.1892 | 25/21, 19/16, 13/11, 6/5 |
32 | 309.6774 | 1.1959 | 6/5, 25/21, 77/64, 19/16 |
33 | 319.3548 | 1.2026 | 77/64, 6/5, 23/19 |
34 | 329.0323 | 1.2093 | 23/19, 17/14, 77/64, 28/23, 6/5, 39/32 |
35 | 338.7097 | 1.2161 | 28/23, 17/14, 39/32, 23/19, 11/9, 27/22 |
36 | 348.3871 | 1.2229 | 11/9, 39/32, 27/22, 28/23, 16/13, 17/14 |
37 | 358.0645 | 1.2298 | 16/13, 27/22, 79/64, 21/17, 11/9, 26/21, 39/32 |
38 | 367.7419 | 1.2367 | 21/17, 26/21, 79/64, 16/13, 27/22 |
39 | 377.4194 | 1.2436 | 26/21, 5/4, 21/17, 79/64 |
40 | 387.0968 | 1.2506 | 5/4 |
41 | 396.7742 | 1.2576 | 24/19, 5/4, 81/64, 19/15 |
42 | 406.4516 | 1.2646 | 81/64, 24/19, 19/15, 14/11 |
43 | 416.129 | 1.2717 | 14/11, 19/15, 23/18, 81/64, 24/19, 41/32 |
44 | 425.8065 | 1.2788 | 23/18, 41/32, 14/11, 9/7 |
45 | 435.4839 | 1.286 | 9/7, 41/32, 22/17, 23/18, 83/64 |
46 | 445.1613 | 1.2932 | 22/17, 83/64, 13/10, 9/7, 30/23 |
47 | 454.8387 | 1.3005 | 13/10, 83/64, 30/23, 22/17, 17/13, 21/16 |
48 | 464.5161 | 1.3078 | 17/13, 30/23, 21/16, 13/10, 25/19, 83/64 |
49 | 474.1935 | 1.3151 | 25/19, 21/16, 17/13, 30/23 |
50 | 483.871 | 1.3225 | 85/64, 25/19, 21/16, 4/3 |
51 | 493.5484 | 1.3299 | 85/64, 4/3 |
52 | 503.2258 | 1.3373 | 4/3, 43/32, 85/64 |
53 | 512.9032 | 1.3448 | 43/32, 27/20, 23/17, 4/3, 19/14 |
54 | 522.5806 | 1.3524 | 23/17, 27/20, 19/14, 87/64, 43/32, 15/11 |
55 | 532.2581 | 1.3599 | 87/64, 19/14, 15/11, 23/17, 26/19, 27/20 |
56 | 541.9355 | 1.3676 | 26/19, 15/11, 11/8, 87/64, 19/14 |
57 | 551.6129 | 1.3752 | 11/8, 26/19, 18/13, 15/11 |
58 | 561.2903 | 1.3829 | 18/13, 25/18, 89/64, 11/8, 32/23 |
59 | 570.9677 | 1.3907 | 89/64, 32/23, 25/18, 18/13, 7/5 |
60 | 580.6452 | 1.3985 | 7/5, 32/23, 45/32, 89/64, 25/18 |
61 | 590.3226 | 1.4063 | 45/32, 24/17, 7/5, 17/12 |
62 | 600.0 | 1.4142 | 17/12, 24/17, 27/19, 91/64, 45/32 |
63 | 609.6774 | 1.4221 | 91/64, 27/19, 17/12, 10/7, 24/17, 33/23 |
64 | 619.3548 | 1.4301 | 10/7, 33/23, 23/16, 91/64, 27/19 |
65 | 629.0323 | 1.4381 | 23/16, 33/23, 13/9, 10/7 |
66 | 638.7097 | 1.4462 | 13/9, 93/64, 16/11, 23/16, 33/23 |
67 | 648.3871 | 1.4543 | 16/11, 93/64, 19/13, 13/9, 22/15 |
68 | 658.0645 | 1.4624 | 19/13, 22/15, 47/32, 16/11, 25/17, 93/64, 28/19 |
69 | 667.7419 | 1.4706 | 25/17, 47/32, 28/19, 22/15, 34/23, 19/13 |
70 | 677.4194 | 1.4789 | 34/23, 28/19, 95/64, 25/17, 47/32, 22/15 |
71 | 687.0968 | 1.4872 | 95/64, 34/23, 3/2, 28/19 |
72 | 696.7742 | 1.4955 | 3/2, 95/64 |
73 | 706.4516 | 1.5039 | 3/2, 97/64 |
74 | 716.129 | 1.5123 | 97/64, 35/23, 32/21, 3/2 |
75 | 725.8065 | 1.5208 | 35/23, 32/21, 97/64, 26/17, 49/32, 23/15 |
76 | 735.4839 | 1.5293 | 26/17, 49/32, 23/15, 32/21, 35/23, 20/13, 97/64 |
77 | 745.1613 | 1.5379 | 20/13, 23/15, 49/32, 17/11, 26/17, 99/64, 32/21 |
78 | 754.8387 | 1.5465 | 99/64, 17/11, 20/13, 14/9, 23/15 |
79 | 764.5161 | 1.5552 | 14/9, 25/16, 99/64, 17/11, 36/23 |
80 | 774.1935 | 1.5639 | 36/23, 25/16, 11/7, 14/9, 101/64 |
81 | 783.871 | 1.5727 | 11/7, 101/64, 30/19, 36/23, 25/16, 19/12 |
82 | 793.5484 | 1.5815 | 19/12, 30/19, 101/64, 27/17, 35/22, 11/7, 51/32 |
83 | 803.2258 | 1.5904 | 35/22, 27/17, 51/32, 19/12, 8/5, 30/19, 101/64 |
84 | 812.9032 | 1.5993 | 8/5, 51/32, 35/22, 103/64, 27/17 |
85 | 822.5806 | 1.6082 | 103/64, 21/13, 8/5, 34/21, 51/32 |
86 | 832.2581 | 1.6173 | 34/21, 21/13, 13/8, 103/64 |
87 | 841.9355 | 1.6263 | 13/8, 34/21, 18/11, 21/13, 105/64 |
88 | 851.6129 | 1.6354 | 18/11, 105/64, 23/14, 13/8, 28/17, 33/20 |
89 | 861.2903 | 1.6446 | 23/14, 28/17, 105/64, 33/20, 38/23, 18/11, 53/32 |
90 | 870.9677 | 1.6538 | 38/23, 53/32, 33/20, 28/17, 23/14, 5/3, 105/64 |
91 | 880.6452 | 1.6631 | 5/3, 53/32, 107/64, 38/23, 33/20 |
92 | 890.3226 | 1.6724 | 107/64, 5/3, 32/19, 27/16 |
93 | 900.0 | 1.6818 | 32/19, 27/16, 107/64, 22/13, 39/23, 5/3 |
94 | 909.6774 | 1.6912 | 22/13, 27/16, 39/23, 32/19, 17/10, 109/64 |
95 | 919.3548 | 1.7007 | 17/10, 109/64, 39/23, 22/13, 27/16, 12/7 |
96 | 929.0323 | 1.7102 | 12/7, 109/64, 55/32, 17/10, 39/23 |
97 | 938.7097 | 1.7198 | 55/32, 12/7, 19/11, 26/15, 111/64 |
98 | 948.3871 | 1.7295 | 19/11, 26/15, 111/64, 33/19, 40/23, 55/32, 12/7 |
99 | 958.0645 | 1.7392 | 40/23, 33/19, 111/64, 26/15, 7/4, 19/11 |
100 | 967.7419 | 1.7489 | 7/4, 40/23, 33/19, 111/64, 26/15, 30/17 |
101 | 977.4194 | 1.7587 | 30/17, 113/64, 7/4, 23/13, 39/22 |
102 | 987.0968 | 1.7686 | 23/13, 113/64, 30/17, 39/22, 16/9, 57/32 |
103 | 996.7742 | 1.7785 | 16/9, 57/32, 39/22, 25/14, 23/13, 34/19, 113/64, 30/17 |
104 | 1006.4516 | 1.7884 | 34/19, 25/14, 57/32, 115/64, 16/9, 9/5, 39/22 |
105 | 1016.129 | 1.7985 | 9/5, 115/64, 34/19, 38/21, 25/14, 29/16 |
106 | 1025.8065 | 1.8086 | 38/21, 29/16, 9/5, 20/11, 115/64 |
107 | 1035.4839 | 1.8187 | 20/11, 29/16, 42/23, 38/21, 117/64, 11/6 |
108 | 1045.1613 | 1.8289 | 117/64, 42/23, 11/6, 20/11, 35/19, 59/32, 29/16 |
109 | 1054.8387 | 1.8391 | 35/19, 59/32, 11/6, 24/13, 117/64, 42/23 |
110 | 1064.5161 | 1.8495 | 24/13, 59/32, 35/19, 13/7, 119/64, 11/6 |
111 | 1074.1935 | 1.8598 | 119/64, 13/7, 28/15, 24/13, 15/8, 59/32 |
112 | 1083.871 | 1.8702 | 28/15, 15/8, 119/64, 32/17, 13/7 |
113 | 1093.5484 | 1.8807 | 32/17, 15/8, 17/9, 121/64, 36/19, 28/15 |
114 | 1103.2258 | 1.8913 | 121/64, 17/9, 36/19, 19/10, 32/17, 40/21, 61/32, 15/8 |
115 | 1112.9032 | 1.9019 | 19/10, 40/21, 61/32, 36/19, 21/11, 44/23, 121/64, 17/9, 23/12 |
116 | 1122.5806 | 1.9125 | 44/23, 21/11, 23/12, 61/32, 40/21, 123/64, 25/13, 19/10, 27/14 |
117 | 1132.2581 | 1.9233 | 25/13, 123/64, 27/14, 23/12, 44/23, 31/16, 21/11, 61/32 |
118 | 1141.9355 | 1.934 | 31/16, 27/14, 33/17, 35/18, 25/13, 123/64, 39/20, 23/12 |
119 | 1151.6129 | 1.9449 | 35/18, 33/17, 39/20, 31/16, 125/64, 45/23, 27/14 |
120 | 1161.2903 | 1.9558 | 45/23, 125/64, 39/20, 35/18, 63/32, 33/17 |
121 | 1170.9677 | 1.9667 | 63/32, 45/23, 125/64, 39/20, 127/64 |
122 | 1180.6452 | 1.9778 | 127/64, 63/32 |
123 | 1190.3226 | 1.9889 | 127/64 |
124 | 1200.0 | 2.0 | 2/1 |
JI Ratio Approximations are comprised of 23 limit ratios and the odd harmonics up to 127.
|