5L 8s

From Xenharmonic Wiki
Revision as of 16:13, 19 October 2015 by Wikispaces>JosephRuhf (**Imported revision 563019239 - Original comment: **)
Jump to navigation Jump to search

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author JosephRuhf and made on 2015-10-19 16:13:34 UTC.
The original revision id was 563019239.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

This MOS, representing tempered chains of the 21st harmonic, is the chromatic scale of Semisept/A-team and Vulture temperaments. The major problematic of approaching it from a traditional tonality point of view is that, at best, it partially misses syntonic root-third-fifth triads unless you are extremely generous with the definition of the category of a "third". However, it does hit the correct syntonic second and seventh, so that insofar as the major second/minor seventh is a consonance, stacks of it (occasionally mixed with the "minor third/major sixth") are typically the most consonant harmonies of the scale.
|| (2+3)/13 ||   ||   || 184.615+<span style="font-size: 12.8000001907349px;">276.923</span> ||
|| (9+13)/57 ||   ||   || 189.474+273.684 ||
|| (7+10)/44 ||   ||   || 190.909+272.727 ||
||   || (19+27)/119 ||   || 191.597+272.269 ||
||   || (12+17)/75 ||   || 192+272 ||
||   || (17+24)/106 ||   || 192.472+271.698 ||
|| (5+7)/31 ||   ||   || 193.548+270.968 ||
||   || (18+25)/111 ||   || 194.595+270.27 ||
||   || (13+18)/80 ||   || 195+270 ||
||   ||   ||   || 195.252+269.832 ||
||   ||   || (21+29)/129 || 195.349+269.907 ||
||   || (8+11)/49 ||   || 195.918+269.388 ||
||   ||   || (19+26)/116 || 196.552+268.966 ||
||   || (11+15)/67 ||   || 197.015+268.657 ||
||   || (14+19)/85 ||   || 197.647+268.235 ||
||   || (17+23)/103 ||   || 198.058+267.961 ||
||   || (20+27)/121 ||   || 198.347+267.769 ||
||   || (23+31)/139 ||   || 198.561+267.626 ||
||   || (26+35)/157 ||   || 198.726+267.516 ||
||   || (29+39)/175 ||   || 198.857+267.429 ||
||   || (32+43)/193 ||   || 198.964+267.358 ||
||   || (35+47)/211 ||   || 199.052+267.299 ||
|| (3+4)/18 ||   ||   || 200+266.667 ||
||   || (19+25)/113 ||   || 201.77+265.442 ||
||   || (16+21)/95 ||   || 202.105+265.2105 ||
||   || (13+17)/77 ||   || 202.597+264.935 ||
||   || (10+13)/59 ||   || 203.39+264.407 ||
||   || (7+9)/41 ||   || 204.878+263.415 ||
||   ||   || (18+23)/105 || 205.714+262.857 ||
||   ||   ||   || 205.861+262.759 ||
||   || (11+14)/64 ||   || 206.25+262.5 ||
||   ||   ||   || 206.653+262.231 ||
||   || (15+19)/87 ||   || 206.897+262.069 ||
||   || (19+24)/110 ||   || 207.273+261.818 ||
|| (4+5)/23 ||   ||   || 208.696+260.870 ||
||   ||   ||   || 209.6305+260.246 ||
||   || (13+16)/74 ||   || 210.811+259.459 ||
||   || (9+11)/51 ||   || 211.765+257.824 ||
||   || (14+17)/79 ||   || 212.658+258.346 ||
|| (5+6)/28 ||   ||   || 214.286+257.143 ||
||   || (16+19)/89 ||   || 215.73+256.18 ||
||   || <span style="font-size: 12.8000001907349px;">(11+13)/61</span> ||   || 216.393+255.738 ||
||   || (17+20)/94 ||   || 217.021+255.319 ||
|| (6+7)/33 ||   ||   || 218.182+254.5455 ||
|| (1+1)/5 ||   ||   || 240+240 ||

Original HTML content:

<html><head><title>5L 8s</title></head><body>This MOS, representing tempered chains of the 21st harmonic, is the chromatic scale of Semisept/A-team and Vulture temperaments. The major problematic of approaching it from a traditional tonality point of view is that, at best, it partially misses syntonic root-third-fifth triads unless you are extremely generous with the definition of the category of a &quot;third&quot;. However, it does hit the correct syntonic second and seventh, so that insofar as the major second/minor seventh is a consonance, stacks of it (occasionally mixed with the &quot;minor third/major sixth&quot;) are typically the most consonant harmonies of the scale.<br />


<table class="wiki_table">
    <tr>
        <td>(2+3)/13<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>184.615+<span style="font-size: 12.8000001907349px;">276.923</span><br />
</td>
    </tr>
    <tr>
        <td>(9+13)/57<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>189.474+273.684<br />
</td>
    </tr>
    <tr>
        <td>(7+10)/44<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>190.909+272.727<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>(19+27)/119<br />
</td>
        <td><br />
</td>
        <td>191.597+272.269<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>(12+17)/75<br />
</td>
        <td><br />
</td>
        <td>192+272<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>(17+24)/106<br />
</td>
        <td><br />
</td>
        <td>192.472+271.698<br />
</td>
    </tr>
    <tr>
        <td>(5+7)/31<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>193.548+270.968<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>(18+25)/111<br />
</td>
        <td><br />
</td>
        <td>194.595+270.27<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>(13+18)/80<br />
</td>
        <td><br />
</td>
        <td>195+270<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>195.252+269.832<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td>(21+29)/129<br />
</td>
        <td>195.349+269.907<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>(8+11)/49<br />
</td>
        <td><br />
</td>
        <td>195.918+269.388<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td>(19+26)/116<br />
</td>
        <td>196.552+268.966<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>(11+15)/67<br />
</td>
        <td><br />
</td>
        <td>197.015+268.657<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>(14+19)/85<br />
</td>
        <td><br />
</td>
        <td>197.647+268.235<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>(17+23)/103<br />
</td>
        <td><br />
</td>
        <td>198.058+267.961<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>(20+27)/121<br />
</td>
        <td><br />
</td>
        <td>198.347+267.769<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>(23+31)/139<br />
</td>
        <td><br />
</td>
        <td>198.561+267.626<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>(26+35)/157<br />
</td>
        <td><br />
</td>
        <td>198.726+267.516<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>(29+39)/175<br />
</td>
        <td><br />
</td>
        <td>198.857+267.429<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>(32+43)/193<br />
</td>
        <td><br />
</td>
        <td>198.964+267.358<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>(35+47)/211<br />
</td>
        <td><br />
</td>
        <td>199.052+267.299<br />
</td>
    </tr>
    <tr>
        <td>(3+4)/18<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>200+266.667<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>(19+25)/113<br />
</td>
        <td><br />
</td>
        <td>201.77+265.442<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>(16+21)/95<br />
</td>
        <td><br />
</td>
        <td>202.105+265.2105<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>(13+17)/77<br />
</td>
        <td><br />
</td>
        <td>202.597+264.935<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>(10+13)/59<br />
</td>
        <td><br />
</td>
        <td>203.39+264.407<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>(7+9)/41<br />
</td>
        <td><br />
</td>
        <td>204.878+263.415<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td>(18+23)/105<br />
</td>
        <td>205.714+262.857<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>205.861+262.759<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>(11+14)/64<br />
</td>
        <td><br />
</td>
        <td>206.25+262.5<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>206.653+262.231<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>(15+19)/87<br />
</td>
        <td><br />
</td>
        <td>206.897+262.069<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>(19+24)/110<br />
</td>
        <td><br />
</td>
        <td>207.273+261.818<br />
</td>
    </tr>
    <tr>
        <td>(4+5)/23<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>208.696+260.870<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>209.6305+260.246<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>(13+16)/74<br />
</td>
        <td><br />
</td>
        <td>210.811+259.459<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>(9+11)/51<br />
</td>
        <td><br />
</td>
        <td>211.765+257.824<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>(14+17)/79<br />
</td>
        <td><br />
</td>
        <td>212.658+258.346<br />
</td>
    </tr>
    <tr>
        <td>(5+6)/28<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>214.286+257.143<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>(16+19)/89<br />
</td>
        <td><br />
</td>
        <td>215.73+256.18<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><span style="font-size: 12.8000001907349px;">(11+13)/61</span><br />
</td>
        <td><br />
</td>
        <td>216.393+255.738<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>(17+20)/94<br />
</td>
        <td><br />
</td>
        <td>217.021+255.319<br />
</td>
    </tr>
    <tr>
        <td>(6+7)/33<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>218.182+254.5455<br />
</td>
    </tr>
    <tr>
        <td>(1+1)/5<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>240+240<br />
</td>
    </tr>
</table>

</body></html>