Interval information
Ratio 81/80
Factorization 2-4 × 34 × 5-1
Monzo [-4 4 -1
Size in cents 21.50629¢
Names syntonic comma,
Didymus comma,
meantone comma
Color name g1, Gu comma,
gu unison
FJS name [math]\displaystyle{ \text{P1}_{5} }[/math]
Special properties square superparticular,
reduced
Tenney height (log2 nd) 12.6618
Weil height (log2 max(n, d)) 12.6797
Wilson height (sopfr(nd)) 25
Open this interval in xen-calc

The syntonic or Didymus or meantone comma (frequency ratio 81/80) is helpful for comparing 3-limit and 5-limit just intonation. Adding or subtracting this comma to/from any 3-limit ratio with an odd limit of 27 or higher creates a 5-limit ratio with a much lower odd-limit. Thus dissonant 3-limit harmonies can often be sweetened via a commatic adjustment. However adding/subtracting this comma to/from any 3-limit ratio of odd limit 3 or less (the 4th, 5th or 8ve), creates a wolf interval of odd limit 27 or higher. Any attempt to tune a fixed-pitch instrument (e.g. guitar or piano) to 5-limit just intonation will create such wolves, thus tempering out 81/80 is desirable. This gives a tuning for the whole tone which is intermediate between 10/9 and 9/8, and leads to meantone temperament, hence the name meantone comma.

81/80 is the smallest superparticular interval which belongs to the 5-limit. Like 16/15, 625/624, 2401/2400 and 4096/4095 it has a fourth power as a numerator. Fourth powers are squares, and any superparticular comma with a square numerator is the ratio between two wider successive superparticular intervals, because n2/(n2-1) = n/(n-1) ÷ (n+1)/n. 81/80 is in fact the difference between 10/9 and 9/8, the product of which is the just major third, 5/4. That the numerator is a fourth power entails that the wider of these two intervals itself has a square numerator; 9/8 is the interval between the successive superparticulars 4/3 and 3/2.

Tempering out a comma does not just depend on an edo's size; 105edo tempers 81/80 out, while 3edo does not.

YouTube video of "Five senses of 81/80" [dead link], demonstratory video by Jacob Barton.

According to this interview, Monroe Golden's Incongruity uses just-intonation chord progressions that exploit this comma.

If one should be so bold as to treat the syntonic comma as a musical interval in its own right as opposed to tempering it out, one can easily use it in melodies as either an appoggitura, an acciaccatura, or a quick passing tone. Furthermore, it is also very easy to exploit in comma pump modulations, as known examples of this kind of thing are familiar chord progressions.

Relations to other Superparticular Ratios

Superparticular ratios, like 81/80, can be expressed as products or quotients of other superparticular ratios. Following is a list of such representations r1 * r2 or r2 / r1 of 81/80, where r1 and r2 are other superparticular ratios.

Names in brackets refer to 7-limit meantone extensions, or 11-limit rank three temperaments from the Didymus family that temper out the respective ratios as commas.

Limit r1 * r2 r2 / r1
5 - 9/8 * 9/10
7 126/125 * 225/224 (septimal meantone) 21/20 * 27/28 (sharptone), 36/35 * 63/64 (dominant)
11 99/98 * 441/440 (euterpe), 121/120 * 243/242 (urania) 33/32 * 54/55 (thalia), 45/44 * 99/100 (calliope)
13 91/90 * 729/728, 105/104 * 351/350 27/26 * 39/40, 65/64 * 324/325, 66/65 * 351/352, 78/77 * 2079/2080
17 85/84 * 1701/1700 51/50 * 135/136
19 96/95 * 513/512, 153/152 * 171/170 57/56 * 189/190, 76/75 * 1215/1216, 77/76 * 1539/1540
23 161/160 * 162/161 69/68 * 459/460
29 117/116 * 261/260 -
31 93/92 * 621/620 63/62 * 279/280
37 111/110 * 297/296 75/74 * 999/1000
41 82/81 * 6561/6560 41/40 * 81/82
43 86/85 * 1377/1376, 87/86 * 1161/1160, 129/128 * 216/215 -
47 141/140 * 189/188 -
53 - 54/53 * 159/160
59 - -
61 - 61/60 * 243/244
67 135/134 * 201/200 -
71 - 71/70 * 567/568, 72/71 * 639/640
73 - 73/72 * 729/730
79 - 79/78 * 3159/3160, 80/79 * 6399/6400
83 83/82 * 3321/3320, 84/83 * 2241/2240 -
89 89/88 * 891/890, 90/89 * 801/800 -
97 97/96 * 486/485 -
101 101/100 * 405/404 -
103 - -
107 108/107 * 321/320 -

External Links