User:BudjarnLambeth/Sandbox2
Title1
Octave stretch or compression
Having a flat tendency, 16et is best tuned with stretched octaves, which improve the accuracy of wide-voiced JI chords and rooted harmonics especially on inharmonic timbres such as bells and gamelan, with 37ed5 and 57ed12 being good options.
What follows is a comparison of stretched- and compressed-octave 16edo tunings.
- 16edo
- Step size: 75.000 ¢, octave size: 1200.0 ¢
Pure-octaves 16edo approximates all harmonics up to 16 within 36.7 ¢.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | -27.0 | +0.0 | -11.3 | -27.0 | +6.2 | +0.0 | +21.1 | -11.3 | -26.3 | -27.0 |
Relative (%) | +0.0 | -35.9 | +0.0 | -15.1 | -35.9 | +8.2 | +0.0 | +28.1 | -15.1 | -35.1 | -35.9 | |
Steps (reduced) |
16 (0) |
25 (9) |
32 (0) |
37 (5) |
41 (9) |
45 (13) |
48 (0) |
51 (3) |
53 (5) |
55 (7) |
57 (9) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -15.5 | +6.2 | +36.7 | +0.0 | -30.0 | +21.1 | +2.5 | -11.3 | -20.8 | -26.3 | -28.3 | -27.0 |
Relative (%) | -20.7 | +8.2 | +49.0 | +0.0 | -39.9 | +28.1 | +3.3 | -15.1 | -27.7 | -35.1 | -37.7 | -35.9 | |
Steps (reduced) |
59 (11) |
61 (13) |
63 (15) |
64 (0) |
65 (1) |
67 (3) |
68 (4) |
69 (5) |
70 (6) |
71 (7) |
72 (8) |
73 (9) |
- Step size: 75.105 ¢, octave size: 1201.7 ¢
Stretching the octave of 16edo by around 2 ¢ results in improved primes 3, 5, 11 and 13, but worse primes 2 and 7. This approximates all harmonics up to 16 within 31.8 ¢. Its 2.5.7.13 WE tuning and 2.5.7.13 TE tuning both do this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +1.7 | -24.3 | +3.4 | -7.4 | -22.7 | +10.9 | +5.0 | +26.4 | -5.7 | -20.5 | -21.0 |
Relative (%) | +2.2 | -32.4 | +4.5 | -9.9 | -30.2 | +14.5 | +6.7 | +35.2 | -7.7 | -27.4 | -27.9 | |
Step | 16 | 25 | 32 | 37 | 41 | 45 | 48 | 51 | 53 | 55 | 57 |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -9.3 | +12.6 | -31.8 | +6.7 | -23.1 | +28.1 | +9.6 | -4.1 | -13.4 | -18.9 | -20.7 | -19.3 |
Relative (%) | -12.4 | +16.7 | -42.3 | +8.9 | -30.8 | +37.4 | +12.8 | -5.4 | -17.9 | -25.1 | -27.6 | -25.7 | |
Step | 59 | 61 | 62 | 64 | 65 | 67 | 68 | 69 | 70 | 71 | 72 | 73 |
- Step size: 75.262 ¢, octave size: 1204.2 ¢
Stretching the octave of 16edo by around 4 ¢ results in very improved primes 3, 5, 11 and 13, but much worse primes 2 and 7. This approximates all harmonics up to 16 within 34.5 ¢. The tunings 15zpi and 59ed13 do this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +4.2 | -20.4 | +8.4 | -1.6 | -16.2 | +18.0 | +12.6 | +34.5 | +2.6 | -11.9 | -12.0 |
Relative (%) | +5.6 | -27.1 | +11.1 | -2.2 | -21.5 | +23.9 | +16.7 | +45.8 | +3.4 | -15.8 | -16.0 | |
Step | 16 | 25 | 32 | 37 | 41 | 45 | 48 | 51 | 53 | 55 | 57 |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -0.1 | +22.2 | -22.0 | +16.8 | -12.9 | -36.6 | +20.3 | +6.8 | -2.4 | -7.7 | -9.4 | -7.8 |
Relative (%) | -0.1 | +29.4 | -29.3 | +22.3 | -17.2 | -48.7 | +27.0 | +9.0 | -3.2 | -10.3 | -12.5 | -10.4 | |
Step | 59 | 61 | 62 | 64 | 65 | 66 | 68 | 69 | 70 | 71 | 72 | 73 |
- Step size (WE 16et): 75.315 ¢, octave size (WE 16et): 1205.0 ¢
Stretching the octave of 16edo by around 5 ¢ results in very improved primes 3, 5, 11 and 13, but much worse primes 2 and 7. This approximates all harmonics up to 16 within 37.2 ¢. Its 13-limit WE tuning and 13-limit TE tuning both do this, so does the tuning 37ed5.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +5.0 | -19.1 | +10.1 | +0.3 | -14.0 | +20.3 | +15.1 | +37.2 | +5.4 | -9.0 | -9.0 |
Relative (%) | +6.7 | -25.3 | +13.4 | +0.5 | -18.6 | +27.0 | +20.1 | +49.3 | +7.1 | -11.9 | -11.9 | |
Step | 16 | 25 | 32 | 37 | 41 | 45 | 48 | 51 | 53 | 55 | 57 |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +3.1 | +25.4 | -18.7 | +20.2 | -9.5 | -33.1 | +23.9 | +10.4 | +1.3 | -4.0 | -5.6 | -4.0 |
Relative (%) | +4.1 | +33.7 | -24.9 | +26.8 | -12.6 | -44.0 | +31.7 | +13.8 | +1.7 | -5.2 | -7.4 | -5.3 | |
Step | 59 | 61 | 62 | 64 | 65 | 66 | 68 | 69 | 70 | 71 | 72 | 73 |
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +4.9 | -19.3 | +9.8 | +0.0 | -14.4 | +19.9 | +14.7 | +36.7 | +4.9 | -9.5 | -9.5 |
Relative (%) | +6.5 | -25.6 | +13.0 | +0.0 | -19.1 | +26.5 | +19.5 | +48.7 | +6.5 | -12.6 | -12.6 | |
Steps (reduced) |
16 (16) |
25 (25) |
32 (32) |
37 (0) |
41 (4) |
45 (8) |
48 (11) |
51 (14) |
53 (16) |
55 (18) |
57 (20) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +2.5 | +24.8 | -19.3 | +19.6 | -10.1 | -33.7 | +23.3 | +9.8 | +0.6 | -4.6 | -6.3 | -4.6 |
Relative (%) | +3.3 | +33.0 | -25.6 | +26.0 | -13.4 | -44.8 | +30.9 | +13.0 | +0.8 | -6.1 | -8.3 | -6.2 | |
Steps (reduced) |
59 (22) |
61 (24) |
62 (25) |
64 (27) |
65 (28) |
66 (29) |
68 (31) |
69 (32) |
70 (33) |
71 (34) |
72 (35) |
73 (36) |
- Step size (57ed12): 75.473 ¢, octave size (57ed12): 1207.6 ¢
Stretching the octave of 16edo by around 7.5 ¢ results in especially improved primes 3, 5 and 11, but far worse primes 2 and 7. This approximates all harmonics up to 16 within NNN ¢. The tunings 57ed12 and 55ed11 do this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +7.6 | -15.1 | +15.1 | +6.2 | -7.6 | +27.5 | +22.7 | -30.3 | +13.7 | -0.3 | +0.0 |
Relative (%) | +10.0 | -20.1 | +20.1 | +8.2 | -10.0 | +36.4 | +30.1 | -40.1 | +18.2 | -0.4 | +0.0 | |
Steps (reduced) |
16 (16) |
25 (25) |
32 (32) |
37 (37) |
41 (41) |
45 (45) |
48 (48) |
50 (50) |
53 (53) |
55 (55) |
57 (0) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +12.4 | +35.0 | -8.9 | +30.3 | +0.8 | -22.7 | +34.6 | +21.3 | +12.3 | +7.3 | +5.8 | +7.6 |
Relative (%) | +16.4 | +46.4 | -11.9 | +40.1 | +1.0 | -30.1 | +45.9 | +28.2 | +16.3 | +9.6 | +7.7 | +10.0 | |
Steps (reduced) |
59 (2) |
61 (4) |
62 (5) |
64 (7) |
65 (8) |
66 (9) |
68 (11) |
69 (12) |
70 (13) |
71 (14) |
72 (15) |
73 (16) |
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +7.7 | -15.0 | +15.3 | +6.4 | -7.3 | +27.7 | +23.0 | -30.0 | +14.0 | +0.0 | +0.3 |
Relative (%) | +10.1 | -19.9 | +20.3 | +8.5 | -9.7 | +36.7 | +30.4 | -39.7 | +18.6 | +0.0 | +0.4 | |
Steps (reduced) |
16 (16) |
25 (25) |
32 (32) |
37 (37) |
41 (41) |
45 (45) |
48 (48) |
50 (50) |
53 (53) |
55 (0) |
57 (2) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +12.7 | +35.4 | -8.6 | +30.6 | +1.1 | -22.3 | +35.0 | +21.7 | +12.7 | +7.7 | +6.2 | +8.0 |
Relative (%) | +16.8 | +46.9 | -11.4 | +40.6 | +1.5 | -29.6 | +46.4 | +28.8 | +16.8 | +10.1 | +8.2 | +10.6 | |
Steps (reduced) |
59 (4) |
61 (6) |
62 (7) |
64 (9) |
65 (10) |
66 (11) |
68 (13) |
69 (14) |
70 (15) |
71 (16) |
72 (17) |
73 (18) |