201edt

From Xenharmonic Wiki
Revision as of 09:48, 5 October 2024 by BudjarnLambeth (talk | contribs) (Intro inter harm)
Jump to navigation Jump to search
This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 200edt 201edt 202edt →
Prime factorization 3 × 67
Step size 9.46246 ¢ 
Octave 127\201edt (1201.73 ¢)
Consistency limit 4
Distinct consistency limit 4

201 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 201edt or 201ed3), is a nonoctave tuning system that divides the interval of 3/1 into 201 equal parts of about 9.46 ¢ each. Each step represents a frequency ratio of 31/201, or the 201st root of 3.

Intervals

Steps Cents Hekts Approximate ratios
0 0 0 1/1
1 9.46 6.47
2 18.92 12.94
3 28.39 19.4 63/62
4 37.85 25.87
5 47.31 32.34 37/36
6 56.77 38.81 31/30
7 66.24 45.27 27/26
8 75.7 51.74 47/45
9 85.16 58.21 21/20
10 94.62 64.68 19/18
11 104.09 71.14
12 113.55 77.61
13 123.01 84.08 29/27
14 132.47 90.55 68/63
15 141.94 97.01 51/47
16 151.4 103.48 12/11
17 160.86 109.95 34/31, 45/41
18 170.32 116.42
19 179.79 122.89
20 189.25 129.35 29/26
21 198.71 135.82 37/33
22 208.17 142.29 62/55
23 217.64 148.76 17/15
24 227.1 155.22 49/43
25 236.56 161.69 39/34, 47/41
26 246.02 168.16
27 255.49 174.63
28 264.95 181.09
29 274.41 187.56 34/29, 41/35
30 283.87 194.03 33/28
31 293.34 200.5
32 302.8 206.97
33 312.26 213.43
34 321.72 219.9
35 331.19 226.37 23/19, 63/52
36 340.65 232.84 28/23
37 350.11 239.3 60/49
38 359.57 245.77
39 369.04 252.24 26/21
40 378.5 258.71 51/41
41 387.96 265.17
42 397.42 271.64 39/31
43 406.89 278.11 43/34, 62/49
44 416.35 284.58
45 425.81 291.04 55/43
46 435.27 297.51 9/7
47 444.74 303.98
48 454.2 310.45 13/10
49 463.66 316.92 17/13
50 473.12 323.38
51 482.59 329.85 37/28
52 492.05 336.32
53 501.51 342.79
54 510.97 349.25 47/35
55 520.44 355.72 27/20
56 529.9 362.19
57 539.36 368.66
58 548.82 375.12 70/51
59 558.29 381.59 29/21
60 567.75 388.06 68/49
61 577.21 394.53 60/43
62 586.67 401
63 596.14 407.46 55/39
64 605.6 413.93
65 615.06 420.4
66 624.52 426.87 33/23
67 633.99 433.33 62/43
68 643.45 439.8 29/20
69 652.91 446.27
70 662.37 452.74
71 671.83 459.2 28/19
72 681.3 465.67 40/27, 43/29
73 690.76 472.14
74 700.22 478.61
75 709.68 485.07
76 719.15 491.54
77 728.61 498.01
78 738.07 504.48
79 747.53 510.95 57/37
80 757 517.41
81 766.46 523.88
82 775.92 530.35 36/23
83 785.38 536.82 63/40
84 794.85 543.28 19/12
85 804.31 549.75
86 813.77 556.22
87 823.23 562.69 37/23
88 832.7 569.15 55/34
89 842.16 575.62
90 851.62 582.09 18/11
91 861.08 588.56 51/31
92 870.55 595.02 43/26
93 880.01 601.49
94 889.47 607.96
95 898.93 614.43 37/22
96 908.4 620.9 49/29
97 917.86 627.36 17/10
98 927.32 633.83
99 936.78 640.3
100 946.25 646.77 19/11
101 955.71 653.23 33/19
102 965.17 659.7
103 974.63 666.17
104 984.1 672.64 30/17
105 993.56 679.1 55/31
106 1003.02 685.57 66/37
107 1012.48 692.04 70/39
108 1021.95 698.51
109 1031.41 704.98 49/27
110 1040.87 711.44 31/17
111 1050.33 717.91 11/6
112 1059.8 724.38
113 1069.26 730.85
114 1078.72 737.31 69/37
115 1088.18 743.78
116 1097.65 750.25 49/26
117 1107.11 756.72 36/19, 55/29
118 1116.57 763.18 40/21
119 1126.03 769.65 23/12
120 1135.5 776.12 52/27
121 1144.96 782.59
122 1154.42 789.05 37/19
123 1163.88 795.52
124 1173.35 801.99
125 1182.81 808.46
126 1192.27 814.93
127 1201.73 821.39
128 1211.2 827.86
129 1220.66 834.33
130 1230.12 840.8 57/28
131 1239.58 847.26
132 1249.05 853.73
133 1258.51 860.2 60/29
134 1267.97 866.67
135 1277.43 873.13 23/11
136 1286.89 879.6
137 1296.36 886.07 55/26
138 1305.82 892.54
139 1315.28 899 62/29
140 1324.74 905.47 43/20, 58/27
141 1334.21 911.94
142 1343.67 918.41 63/29
143 1353.13 924.88
144 1362.59 931.34
145 1372.06 937.81
146 1381.52 944.28 20/9
147 1390.98 950.75
148 1400.44 957.21
149 1409.91 963.68 70/31
150 1419.37 970.15
151 1428.83 976.62
152 1438.29 983.08 39/17, 62/27
153 1447.76 989.55 30/13
154 1457.22 996.02
155 1466.68 1002.49 7/3
156 1476.14 1008.96 68/29
157 1485.61 1015.42
158 1495.07 1021.89
159 1504.53 1028.36 31/13
160 1513.99 1034.83
161 1523.46 1041.29 41/17
162 1532.92 1047.76 63/26
163 1542.38 1054.23
164 1551.84 1060.7 49/20
165 1561.31 1067.16 69/28
166 1570.77 1073.63 52/21, 57/23
167 1580.23 1080.1
168 1589.69 1086.57
169 1599.16 1093.03 68/27
170 1608.62 1099.5
171 1618.08 1105.97 28/11
172 1627.54 1112.44
173 1637.01 1118.91
174 1646.47 1125.37
175 1655.93 1131.84
176 1665.39 1138.31 34/13
177 1674.86 1144.78
178 1684.32 1151.24 45/17
179 1693.78 1157.71
180 1703.24 1164.18
181 1712.71 1170.65
182 1722.17 1177.11
183 1731.63 1183.58
184 1741.09 1190.05 41/15
185 1750.56 1196.52 11/4
186 1760.02 1202.99 47/17
187 1769.48 1209.45
188 1778.94 1215.92
189 1788.41 1222.39
190 1797.87 1228.86
191 1807.33 1235.32 54/19
192 1816.79 1241.79 20/7
193 1826.26 1248.26
194 1835.72 1254.73 26/9
195 1845.18 1261.19
196 1854.64 1267.66
197 1864.11 1274.13
198 1873.57 1280.6 62/21
199 1883.03 1287.06
200 1892.49 1293.53
201 1901.96 1300 3/1

Harmonics

Approximation of harmonics in 201edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +1.73 +0.00 +3.47 -4.35 +1.73 -0.19 -4.26 +0.00 -2.62 +2.70 +3.47
Relative (%) +18.3 +0.0 +36.6 -46.0 +18.3 -2.0 -45.1 +0.0 -27.7 +28.6 +36.6
Steps
(reduced)
127
(127)
201
(0)
254
(53)
294
(93)
328
(127)
356
(155)
380
(179)
402
(0)
421
(19)
439
(37)
455
(53)
Approximation of harmonics in 201edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -2.63 +1.54 -4.35 -2.53 -3.40 +1.73 +2.75 -0.88 -0.19 +4.44 +3.18
Relative (%) -27.8 +16.3 -46.0 -26.8 -35.9 +18.3 +29.1 -9.3 -2.0 +46.9 +33.6
Steps
(reduced)
469
(67)
483
(81)
495
(93)
507
(105)
518
(116)
529
(127)
539
(137)
548
(146)
557
(155)
566
(164)
574
(172)