229edt

From Xenharmonic Wiki
Revision as of 09:19, 4 October 2024 by BudjarnLambeth (talk | contribs) (Intro inter harm)
Jump to navigation Jump to search
This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 228edt 229edt 230edt →
Prime factorization 229 (prime)
Step size 8.30548 ¢ 
Octave 144\229edt (1195.99 ¢)
Consistency limit 3
Distinct consistency limit 3

229 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 229edt or 229ed3), is a nonoctave tuning system that divides the interval of 3/1 into 229 equal parts of about 8.31 ¢ each. Each step represents a frequency ratio of 31/229, or the 229th root of 3.

Intervals

Steps Cents Hekts Approximate ratios
0 0 0 1/1
1 8.31 5.68
2 16.61 11.35
3 24.92 17.03
4 33.22 22.71
5 41.53 28.38 42/41, 43/42
6 49.83 34.06 35/34
7 58.14 39.74
8 66.44 45.41
9 74.75 51.09
10 83.05 56.77 43/41
11 91.36 62.45 39/37, 58/55
12 99.67 68.12
13 107.97 73.8 33/31
14 116.28 79.48 31/29, 46/43
15 124.58 85.15 29/27
16 132.89 90.83
17 141.19 96.51 51/47
18 149.5 102.18
19 157.8 107.86 23/21
20 166.11 113.54
21 174.42 119.21
22 182.72 124.89
23 191.03 130.57
24 199.33 136.24 46/41
25 207.64 141.92 62/55
26 215.94 147.6
27 224.25 153.28 33/29, 74/65
28 232.55 158.95
29 240.86 164.63
30 249.16 170.31
31 257.47 175.98
32 265.78 181.66
33 274.08 187.34 41/35
34 282.39 193.01
35 290.69 198.69
36 299 204.37
37 307.3 210.04
38 315.61 215.72 6/5
39 323.91 221.4 41/34, 47/39
40 332.22 227.07
41 340.52 232.75
42 348.83 238.43
43 357.14 244.1 43/35
44 365.44 249.78 21/17
45 373.75 255.46
46 382.05 261.14
47 390.36 266.81
48 398.66 272.49 34/27
49 406.97 278.17 43/34
50 415.27 283.84
51 423.58 289.52
52 431.88 295.2
53 440.19 300.87 58/45
54 448.5 306.55 35/27
55 456.8 312.23
56 465.11 317.9 17/13
57 473.41 323.58 46/35
58 481.72 329.26
59 490.02 334.93
60 498.33 340.61
61 506.63 346.29 63/47, 75/56
62 514.94 351.97 35/26
63 523.25 357.64 23/17
64 531.55 363.32
65 539.86 369
66 548.16 374.67
67 556.47 380.35 51/37
68 564.77 386.03
69 573.08 391.7
70 581.38 397.38
71 589.69 403.06
72 597.99 408.73 65/46
73 606.3 414.41
74 614.61 420.09
75 622.91 425.76
76 631.22 431.44 36/25
77 639.52 437.12 55/38
78 647.83 442.79
79 656.13 448.47 19/13
80 664.44 454.15 69/47
81 672.74 459.83
82 681.05 465.5 43/29
83 689.35 471.18
84 697.66 476.86
85 705.97 482.53
86 714.27 488.21 68/45
87 722.58 493.89 41/27
88 730.88 499.56
89 739.19 505.24
90 747.49 510.92 57/37
91 755.8 516.59 65/42
92 764.1 522.27 14/9
93 772.41 527.95
94 780.72 533.62
95 789.02 539.3 41/26
96 797.33 544.98 65/41
97 805.63 550.66 43/27
98 813.94 556.33
99 822.24 562.01 37/23, 45/28
100 830.55 567.69 21/13
101 838.85 573.36
102 847.16 579.04 31/19
103 855.46 584.72 77/47
104 863.77 590.39
105 872.08 596.07
106 880.38 601.75
107 888.69 607.42
108 896.99 613.1
109 905.3 618.78
110 913.6 624.45 39/23
111 921.91 630.13 46/27, 63/37
112 930.21 635.81 65/38
113 938.52 641.48
114 946.82 647.16 19/11
115 955.13 652.84 33/19
116 963.44 658.52
117 971.74 664.19
118 980.05 669.87 37/21
119 988.35 675.55 23/13
120 996.66 681.22
121 1004.96 686.9
122 1013.27 692.58
123 1021.57 698.25 74/41
124 1029.88 703.93
125 1038.19 709.61
126 1046.49 715.28
127 1054.8 720.96 57/31
128 1063.1 726.64
129 1071.41 732.31 13/7
130 1079.71 737.99 28/15, 69/37
131 1088.02 743.67
132 1096.32 749.34
133 1104.63 755.02
134 1112.93 760.7
135 1121.24 766.38 65/34
136 1129.55 772.05
137 1137.85 777.73 27/14
138 1146.16 783.41
139 1154.46 789.08 37/19
140 1162.77 794.76
141 1171.07 800.44
142 1179.38 806.11
143 1187.68 811.79
144 1195.99 817.47
145 1204.29 823.14
146 1212.6 828.82
147 1220.91 834.5
148 1229.21 840.17
149 1237.52 845.85 47/23
150 1245.82 851.53 39/19
151 1254.13 857.21
152 1262.43 862.88
153 1270.74 868.56 25/12
154 1279.04 874.24
155 1287.35 879.91
156 1295.65 885.59 74/35
157 1303.96 891.27
158 1312.27 896.94
159 1320.57 902.62
160 1328.88 908.3
161 1337.18 913.97
162 1345.49 919.65 37/17
163 1353.79 925.33
164 1362.1 931
165 1370.4 936.68
166 1378.71 942.36 51/23
167 1387.02 948.03
168 1395.32 953.71 47/21, 56/25
169 1403.63 959.39
170 1411.93 965.07
171 1420.24 970.74
172 1428.54 976.42
173 1436.85 982.1 39/17
174 1445.15 987.77
175 1453.46 993.45
176 1461.76 999.13
177 1470.07 1004.8
178 1478.38 1010.48
179 1486.68 1016.16
180 1494.99 1021.83
181 1503.29 1027.51
182 1511.6 1033.19
183 1519.9 1038.86
184 1528.21 1044.54
185 1536.51 1050.22 17/7
186 1544.82 1055.9
187 1553.12 1061.57
188 1561.43 1067.25
189 1569.74 1072.93
190 1578.04 1078.6
191 1586.35 1084.28 5/2
192 1594.65 1089.96
193 1602.96 1095.63
194 1611.26 1101.31
195 1619.57 1106.99
196 1627.87 1112.66
197 1636.18 1118.34
198 1644.49 1124.02
199 1652.79 1129.69
200 1661.1 1135.37
201 1669.4 1141.05
202 1677.71 1146.72 29/11
203 1686.01 1152.4
204 1694.32 1158.08
205 1702.62 1163.76
206 1710.93 1169.43
207 1719.23 1175.11
208 1727.54 1180.79
209 1735.85 1186.46
210 1744.15 1192.14 63/23
211 1752.46 1197.82
212 1760.76 1203.49 47/17
213 1769.07 1209.17
214 1777.37 1214.85
215 1785.68 1220.52
216 1793.98 1226.2 31/11
217 1802.29 1231.88
218 1810.59 1237.55 37/13
219 1818.9 1243.23
220 1827.21 1248.91
221 1835.51 1254.59
222 1843.82 1260.26
223 1852.12 1265.94
224 1860.43 1271.62 41/14
225 1868.73 1277.29
226 1877.04 1282.97
227 1885.34 1288.65
228 1893.65 1294.32
229 1901.96 1300 3/1

Harmonics

Approximation of harmonics in 229edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -4.01 +0.00 +0.28 -3.98 -4.01 +3.20 -3.73 +0.00 +0.32 +1.42 +0.28
Relative (%) -48.3 +0.0 +3.4 -47.9 -48.3 +38.5 -44.9 +0.0 +3.8 +17.1 +3.4
Steps
(reduced)
144
(144)
229
(0)
289
(60)
335
(106)
373
(144)
406
(177)
433
(204)
458
(0)
480
(22)
500
(42)
518
(60)
Approximation of harmonics in 229edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +2.90 -0.81 -3.98 +0.57 +3.58 -4.01 +2.05 -3.69 +3.20 -2.59 +3.51
Relative (%) +35.0 -9.8 -47.9 +6.8 +43.1 -48.3 +24.7 -44.5 +38.5 -31.2 +42.3
Steps
(reduced)
535
(77)
550
(92)
564
(106)
578
(120)
591
(133)
602
(144)
614
(156)
624
(166)
635
(177)
644
(186)
654
(196)