65edo: Difference between revisions
Jump to navigation
Jump to search
Wikispaces>genewardsmith **Imported revision 216620528 - Original comment: ** |
Wikispaces>genewardsmith **Imported revision 232660568 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011- | : This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-05-29 02:00:36 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>232660568</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
Line 9: | Line 9: | ||
//65edo// divides the [[octave]] into 65 equal parts of 18.462 cents each. It can be characterized as the temperament which tempers out the [[schisma]], 32805/32768, the [[sensipent comma]], 78732/78125, and the [[wuerschmidt comma]], 393216/390625. In the [[7-limit]], there are two different maps; the first is <65 103 151 182|, tempering out 126/125, 245/243 and 686/675, so that 65edo supports sensi temperament, and the second is <65 103 151 183|, tempering out 225/224, 3125/3097, 4000/3969 and 5120/5103, so that 65edo supports garibaldi temperament. In both cases, the tuning privileges the [[5-limit]] over the 7-limit, as the 5-limit of 65 is quite accurate. The same can be said for the two different versions of 7-limit [[wuerschmidt temperament]] (wurschmidt and worschmidt) these two mappings provide. | //65edo// divides the [[octave]] into 65 equal parts of 18.462 cents each. It can be characterized as the temperament which tempers out the [[schisma]], 32805/32768, the [[sensipent comma]], 78732/78125, and the [[wuerschmidt comma]], 393216/390625. In the [[7-limit]], there are two different maps; the first is <65 103 151 182|, tempering out 126/125, 245/243 and 686/675, so that 65edo supports sensi temperament, and the second is <65 103 151 183|, tempering out 225/224, 3125/3097, 4000/3969 and 5120/5103, so that 65edo supports garibaldi temperament. In both cases, the tuning privileges the [[5-limit]] over the 7-limit, as the 5-limit of 65 is quite accurate. The same can be said for the two different versions of 7-limit [[wuerschmidt temperament]] (wurschmidt and worschmidt) these two mappings provide. | ||
65edo approximates the intervals 3/2, 5/4, 11/8 and 19/16 well, so that it does a good job representing the 2.3.5.11.19 [[just intonation subgroup]]. To this one may want to add 13/8 and 17/16, giving the [[19-limit]] no-sevens subgroup 2.3.5.11.13.17.19. Also of interest is the subgroup 2.3.5.49.11.91.119.19, on which 65 has the same tuning and commas as [[130edo]]. | 65edo approximates the intervals 3/2, 5/4, 11/8 and 19/16 well, so that it does a good job representing the 2.3.5.11.19 [[just intonation subgroup]]. To this one may want to add 13/8 and 17/16, giving the [[19-limit]] no-sevens subgroup 2.3.5.11.13.17.19. Also of interest is the 19-limit [[k*N subgroups|2*65 subgroup]] 2.3.5.49.11.91.119.19, on which 65 has the same tuning and commas as [[130edo]]. | ||
==Intervals== | ==Intervals== | ||
Line 82: | Line 82: | ||
<em>65edo</em> divides the <a class="wiki_link" href="/octave">octave</a> into 65 equal parts of 18.462 cents each. It can be characterized as the temperament which tempers out the <a class="wiki_link" href="/schisma">schisma</a>, 32805/32768, the <a class="wiki_link" href="/sensipent%20comma">sensipent comma</a>, 78732/78125, and the <a class="wiki_link" href="/wuerschmidt%20comma">wuerschmidt comma</a>, 393216/390625. In the <a class="wiki_link" href="/7-limit">7-limit</a>, there are two different maps; the first is &lt;65 103 151 182|, tempering out 126/125, 245/243 and 686/675, so that 65edo supports sensi temperament, and the second is &lt;65 103 151 183|, tempering out 225/224, 3125/3097, 4000/3969 and 5120/5103, so that 65edo supports garibaldi temperament. In both cases, the tuning privileges the <a class="wiki_link" href="/5-limit">5-limit</a> over the 7-limit, as the 5-limit of 65 is quite accurate. The same can be said for the two different versions of 7-limit <a class="wiki_link" href="/wuerschmidt%20temperament">wuerschmidt temperament</a> (wurschmidt and worschmidt) these two mappings provide.<br /> | <em>65edo</em> divides the <a class="wiki_link" href="/octave">octave</a> into 65 equal parts of 18.462 cents each. It can be characterized as the temperament which tempers out the <a class="wiki_link" href="/schisma">schisma</a>, 32805/32768, the <a class="wiki_link" href="/sensipent%20comma">sensipent comma</a>, 78732/78125, and the <a class="wiki_link" href="/wuerschmidt%20comma">wuerschmidt comma</a>, 393216/390625. In the <a class="wiki_link" href="/7-limit">7-limit</a>, there are two different maps; the first is &lt;65 103 151 182|, tempering out 126/125, 245/243 and 686/675, so that 65edo supports sensi temperament, and the second is &lt;65 103 151 183|, tempering out 225/224, 3125/3097, 4000/3969 and 5120/5103, so that 65edo supports garibaldi temperament. In both cases, the tuning privileges the <a class="wiki_link" href="/5-limit">5-limit</a> over the 7-limit, as the 5-limit of 65 is quite accurate. The same can be said for the two different versions of 7-limit <a class="wiki_link" href="/wuerschmidt%20temperament">wuerschmidt temperament</a> (wurschmidt and worschmidt) these two mappings provide.<br /> | ||
<br /> | <br /> | ||
65edo approximates the intervals 3/2, 5/4, 11/8 and 19/16 well, so that it does a good job representing the 2.3.5.11.19 <a class="wiki_link" href="/just%20intonation%20subgroup">just intonation subgroup</a>. To this one may want to add 13/8 and 17/16, giving the <a class="wiki_link" href="/19-limit">19-limit</a> no-sevens subgroup 2.3.5.11.13.17.19. Also of interest is the subgroup 2.3.5.49.11.91.119.19, on which 65 has the same tuning and commas as <a class="wiki_link" href="/130edo">130edo</a>.<br /> | 65edo approximates the intervals 3/2, 5/4, 11/8 and 19/16 well, so that it does a good job representing the 2.3.5.11.19 <a class="wiki_link" href="/just%20intonation%20subgroup">just intonation subgroup</a>. To this one may want to add 13/8 and 17/16, giving the <a class="wiki_link" href="/19-limit">19-limit</a> no-sevens subgroup 2.3.5.11.13.17.19. Also of interest is the 19-limit <a class="wiki_link" href="/k%2AN%20subgroups">2*65 subgroup</a> 2.3.5.49.11.91.119.19, on which 65 has the same tuning and commas as <a class="wiki_link" href="/130edo">130edo</a>.<br /> | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule:2:&lt;h2&gt; --><h2 id="toc1"><a name="x65 tone equal temperament-Intervals"></a><!-- ws:end:WikiTextHeadingRule:2 -->Intervals</h2> | <!-- ws:start:WikiTextHeadingRule:2:&lt;h2&gt; --><h2 id="toc1"><a name="x65 tone equal temperament-Intervals"></a><!-- ws:end:WikiTextHeadingRule:2 -->Intervals</h2> |
Revision as of 02:00, 29 May 2011
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author genewardsmith and made on 2011-05-29 02:00:36 UTC.
- The original revision id was 232660568.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
=<span style="color: #750063; font-size: 103%;">65 tone equal temperament</span>= //65edo// divides the [[octave]] into 65 equal parts of 18.462 cents each. It can be characterized as the temperament which tempers out the [[schisma]], 32805/32768, the [[sensipent comma]], 78732/78125, and the [[wuerschmidt comma]], 393216/390625. In the [[7-limit]], there are two different maps; the first is <65 103 151 182|, tempering out 126/125, 245/243 and 686/675, so that 65edo supports sensi temperament, and the second is <65 103 151 183|, tempering out 225/224, 3125/3097, 4000/3969 and 5120/5103, so that 65edo supports garibaldi temperament. In both cases, the tuning privileges the [[5-limit]] over the 7-limit, as the 5-limit of 65 is quite accurate. The same can be said for the two different versions of 7-limit [[wuerschmidt temperament]] (wurschmidt and worschmidt) these two mappings provide. 65edo approximates the intervals 3/2, 5/4, 11/8 and 19/16 well, so that it does a good job representing the 2.3.5.11.19 [[just intonation subgroup]]. To this one may want to add 13/8 and 17/16, giving the [[19-limit]] no-sevens subgroup 2.3.5.11.13.17.19. Also of interest is the 19-limit [[k*N subgroups|2*65 subgroup]] 2.3.5.49.11.91.119.19, on which 65 has the same tuning and commas as [[130edo]]. ==Intervals== || Degrees of 65-EDO || Cents value || || 0 || 0 || || 1 || 18,4615 || || 2 || 36,9231 || || 3 || 55,3846 || || 4 || 73,8462 || || 5 || 92,3077 || || 6 || 110,7692 || || 7 || 129,2308 || || 8 || 147,6923 || || 9 || 166,1538 || || 10 || 184,6154 || || 11 || 203,0769 || || 12 || 221,5385 || || 13 || 240 || || 14 || 258,4615 || || 15 || 276,9231 || || 16 || 295,3846 || || 17 || 313,8462 || || 18 || 332,3077 || || 19 || 350,7692 || || 20 || 369,2308 || || 21 || 387,6923 || || 22 || 406,1538 || || 23 || 424,6154 || || 24 || 443,0769 || || 25 || 461,5385 || || 26 || 480 || || 27 || 498,4615 || || 28 || 516,9231 || || 29 || 535,3846 || || 30 || 553,8462 || || 31 || 572,3077 || || 32 || 590,7692 || || 33 || 609,2308 || || 34 || 627,6923 || || 35 || 646,1538 || || 36 || 664,6154 || || 37 || 683,0769 || || 38 || 701,5385 || || 39 || 720 || || 40 || 738,4615 || || 41 || 756,9231 || || 42 || 775,3846 || || 43 || 793,8462 || || 44 || 812,3077 || || 45 || 830,7692 || || 46 || 849,2308 || || 47 || 867,6923 || || 48 || 886,1538 || || 49 || 904,6154 || || 50 || 923,0769 || || 51 || 941,5385 || || 52 || 960 || || 53 || 978,4615 || || 54 || 996,9231 || || 55 || 1015,3846 || || 56 || 1033,8462 || || 57 || 1052,3077 || || 58 || 1070,7692 || || 59 || 1089,2308 || || 60 || 1107,6923 || || 61 || 1126,1538 || || 62 || 1144,6154 || || 63 || 1163,0769 || || 64 || 1181,5385 ||
Original HTML content:
<html><head><title>65edo</title></head><body><!-- ws:start:WikiTextHeadingRule:0:<h1> --><h1 id="toc0"><a name="x65 tone equal temperament"></a><!-- ws:end:WikiTextHeadingRule:0 --><span style="color: #750063; font-size: 103%;">65 tone equal temperament</span></h1> <em>65edo</em> divides the <a class="wiki_link" href="/octave">octave</a> into 65 equal parts of 18.462 cents each. It can be characterized as the temperament which tempers out the <a class="wiki_link" href="/schisma">schisma</a>, 32805/32768, the <a class="wiki_link" href="/sensipent%20comma">sensipent comma</a>, 78732/78125, and the <a class="wiki_link" href="/wuerschmidt%20comma">wuerschmidt comma</a>, 393216/390625. In the <a class="wiki_link" href="/7-limit">7-limit</a>, there are two different maps; the first is <65 103 151 182|, tempering out 126/125, 245/243 and 686/675, so that 65edo supports sensi temperament, and the second is <65 103 151 183|, tempering out 225/224, 3125/3097, 4000/3969 and 5120/5103, so that 65edo supports garibaldi temperament. In both cases, the tuning privileges the <a class="wiki_link" href="/5-limit">5-limit</a> over the 7-limit, as the 5-limit of 65 is quite accurate. The same can be said for the two different versions of 7-limit <a class="wiki_link" href="/wuerschmidt%20temperament">wuerschmidt temperament</a> (wurschmidt and worschmidt) these two mappings provide.<br /> <br /> 65edo approximates the intervals 3/2, 5/4, 11/8 and 19/16 well, so that it does a good job representing the 2.3.5.11.19 <a class="wiki_link" href="/just%20intonation%20subgroup">just intonation subgroup</a>. To this one may want to add 13/8 and 17/16, giving the <a class="wiki_link" href="/19-limit">19-limit</a> no-sevens subgroup 2.3.5.11.13.17.19. Also of interest is the 19-limit <a class="wiki_link" href="/k%2AN%20subgroups">2*65 subgroup</a> 2.3.5.49.11.91.119.19, on which 65 has the same tuning and commas as <a class="wiki_link" href="/130edo">130edo</a>.<br /> <br /> <!-- ws:start:WikiTextHeadingRule:2:<h2> --><h2 id="toc1"><a name="x65 tone equal temperament-Intervals"></a><!-- ws:end:WikiTextHeadingRule:2 -->Intervals</h2> <table class="wiki_table"> <tr> <td>Degrees of 65-EDO<br /> </td> <td>Cents value<br /> </td> </tr> <tr> <td>0<br /> </td> <td>0<br /> </td> </tr> <tr> <td>1<br /> </td> <td>18,4615<br /> </td> </tr> <tr> <td>2<br /> </td> <td>36,9231<br /> </td> </tr> <tr> <td>3<br /> </td> <td>55,3846<br /> </td> </tr> <tr> <td>4<br /> </td> <td>73,8462<br /> </td> </tr> <tr> <td>5<br /> </td> <td>92,3077<br /> </td> </tr> <tr> <td>6<br /> </td> <td>110,7692<br /> </td> </tr> <tr> <td>7<br /> </td> <td>129,2308<br /> </td> </tr> <tr> <td>8<br /> </td> <td>147,6923<br /> </td> </tr> <tr> <td>9<br /> </td> <td>166,1538<br /> </td> </tr> <tr> <td>10<br /> </td> <td>184,6154<br /> </td> </tr> <tr> <td>11<br /> </td> <td>203,0769<br /> </td> </tr> <tr> <td>12<br /> </td> <td>221,5385<br /> </td> </tr> <tr> <td>13<br /> </td> <td>240<br /> </td> </tr> <tr> <td>14<br /> </td> <td>258,4615<br /> </td> </tr> <tr> <td>15<br /> </td> <td>276,9231<br /> </td> </tr> <tr> <td>16<br /> </td> <td>295,3846<br /> </td> </tr> <tr> <td>17<br /> </td> <td>313,8462<br /> </td> </tr> <tr> <td>18<br /> </td> <td>332,3077<br /> </td> </tr> <tr> <td>19<br /> </td> <td>350,7692<br /> </td> </tr> <tr> <td>20<br /> </td> <td>369,2308<br /> </td> </tr> <tr> <td>21<br /> </td> <td>387,6923<br /> </td> </tr> <tr> <td>22<br /> </td> <td>406,1538<br /> </td> </tr> <tr> <td>23<br /> </td> <td>424,6154<br /> </td> </tr> <tr> <td>24<br /> </td> <td>443,0769<br /> </td> </tr> <tr> <td>25<br /> </td> <td>461,5385<br /> </td> </tr> <tr> <td>26<br /> </td> <td>480<br /> </td> </tr> <tr> <td>27<br /> </td> <td>498,4615<br /> </td> </tr> <tr> <td>28<br /> </td> <td>516,9231<br /> </td> </tr> <tr> <td>29<br /> </td> <td>535,3846<br /> </td> </tr> <tr> <td>30<br /> </td> <td>553,8462<br /> </td> </tr> <tr> <td>31<br /> </td> <td>572,3077<br /> </td> </tr> <tr> <td>32<br /> </td> <td>590,7692<br /> </td> </tr> <tr> <td>33<br /> </td> <td>609,2308<br /> </td> </tr> <tr> <td>34<br /> </td> <td>627,6923<br /> </td> </tr> <tr> <td>35<br /> </td> <td>646,1538<br /> </td> </tr> <tr> <td>36<br /> </td> <td>664,6154<br /> </td> </tr> <tr> <td>37<br /> </td> <td>683,0769<br /> </td> </tr> <tr> <td>38<br /> </td> <td>701,5385<br /> </td> </tr> <tr> <td>39<br /> </td> <td>720<br /> </td> </tr> <tr> <td>40<br /> </td> <td>738,4615<br /> </td> </tr> <tr> <td>41<br /> </td> <td>756,9231<br /> </td> </tr> <tr> <td>42<br /> </td> <td>775,3846<br /> </td> </tr> <tr> <td>43<br /> </td> <td>793,8462<br /> </td> </tr> <tr> <td>44<br /> </td> <td>812,3077<br /> </td> </tr> <tr> <td>45<br /> </td> <td>830,7692<br /> </td> </tr> <tr> <td>46<br /> </td> <td>849,2308<br /> </td> </tr> <tr> <td>47<br /> </td> <td>867,6923<br /> </td> </tr> <tr> <td>48<br /> </td> <td>886,1538<br /> </td> </tr> <tr> <td>49<br /> </td> <td>904,6154<br /> </td> </tr> <tr> <td>50<br /> </td> <td>923,0769<br /> </td> </tr> <tr> <td>51<br /> </td> <td>941,5385<br /> </td> </tr> <tr> <td>52<br /> </td> <td>960<br /> </td> </tr> <tr> <td>53<br /> </td> <td>978,4615<br /> </td> </tr> <tr> <td>54<br /> </td> <td>996,9231<br /> </td> </tr> <tr> <td>55<br /> </td> <td>1015,3846<br /> </td> </tr> <tr> <td>56<br /> </td> <td>1033,8462<br /> </td> </tr> <tr> <td>57<br /> </td> <td>1052,3077<br /> </td> </tr> <tr> <td>58<br /> </td> <td>1070,7692<br /> </td> </tr> <tr> <td>59<br /> </td> <td>1089,2308<br /> </td> </tr> <tr> <td>60<br /> </td> <td>1107,6923<br /> </td> </tr> <tr> <td>61<br /> </td> <td>1126,1538<br /> </td> </tr> <tr> <td>62<br /> </td> <td>1144,6154<br /> </td> </tr> <tr> <td>63<br /> </td> <td>1163,0769<br /> </td> </tr> <tr> <td>64<br /> </td> <td>1181,5385<br /> </td> </tr> </table> </body></html>