|
|
Line 1: |
Line 1: |
| <h2>IMPORTED REVISION FROM WIKISPACES</h2>
| | The 66 equal division divides the octave into 66 equal parts of 18.182 cents each. The patent is contorted in the 5-limit, tempering out the same commas 250/243, 2048/2025 and 3125/3072 as [[22edo|22edo]]. In the 7-limit it tempers out 686/675 and 1029/1024, in the 11-limit 55/54, 100/99 and 121/120, in the 13-limit 91/90, 169/168, 196/195 and in the 17-limit 136/135 and 256/255. It provides the [[Optimal_patent_val|optimal patent val]] for 11- and 13-limit [[Porcupine_family#Ammonite|ammonite temperament]]. |
| This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| |
| : This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-09-07 23:54:40 UTC</tt>.<br>
| |
| : The original revision id was <tt>251823648</tt>.<br>
| |
| : The revision comment was: <tt></tt><br>
| |
| The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
| |
| <h4>Original Wikitext content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">The 66 equal division divides the octave into 66 equal parts of 18.182 cents each. The patent is contorted in the 5-limit, tempering out the same commas 250/243, 2048/2025 and 3125/3072 as [[22edo]]. In the 7-limit it tempers out 686/675 and 1029/1024, in the 11-limit 55/54, 100/99 and 121/120, in the 13-limit 91/90, 169/168, 196/195 and in the 17-limit 136/135 and 256/255. It provides the [[optimal patent val]] for 11- and 13-limit [[Porcupine family#Ammonite|ammonite temperament]].
| |
|
| |
|
| The 66b val tempers out 16875/16384 in the 5-limit, 126/125, 1728/1715 and 2401/2400 in the 7-limit, 99/98 and 385/384 in the 11-limit, and 105/104, 144/143 and 847/845 in the 13-limit.</pre></div> | | The 66b val tempers out 16875/16384 in the 5-limit, 126/125, 1728/1715 and 2401/2400 in the 7-limit, 99/98 and 385/384 in the 11-limit, and 105/104, 144/143 and 847/845 in the 13-limit. |
| <h4>Original HTML content:</h4>
| | [[Category:ammonite]] |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>66edo</title></head><body>The 66 equal division divides the octave into 66 equal parts of 18.182 cents each. The patent is contorted in the 5-limit, tempering out the same commas 250/243, 2048/2025 and 3125/3072 as <a class="wiki_link" href="/22edo">22edo</a>. In the 7-limit it tempers out 686/675 and 1029/1024, in the 11-limit 55/54, 100/99 and 121/120, in the 13-limit 91/90, 169/168, 196/195 and in the 17-limit 136/135 and 256/255. It provides the <a class="wiki_link" href="/optimal%20patent%20val">optimal patent val</a> for 11- and 13-limit <a class="wiki_link" href="/Porcupine%20family#Ammonite">ammonite temperament</a>.<br />
| |
| <br />
| |
| The 66b val tempers out 16875/16384 in the 5-limit, 126/125, 1728/1715 and 2401/2400 in the 7-limit, 99/98 and 385/384 in the 11-limit, and 105/104, 144/143 and 847/845 in the 13-limit.</body></html></pre></div>
| |
The 66 equal division divides the octave into 66 equal parts of 18.182 cents each. The patent is contorted in the 5-limit, tempering out the same commas 250/243, 2048/2025 and 3125/3072 as 22edo. In the 7-limit it tempers out 686/675 and 1029/1024, in the 11-limit 55/54, 100/99 and 121/120, in the 13-limit 91/90, 169/168, 196/195 and in the 17-limit 136/135 and 256/255. It provides the optimal patent val for 11- and 13-limit ammonite temperament.
The 66b val tempers out 16875/16384 in the 5-limit, 126/125, 1728/1715 and 2401/2400 in the 7-limit, 99/98 and 385/384 in the 11-limit, and 105/104, 144/143 and 847/845 in the 13-limit.