User:Eliora/5ed100: Difference between revisions
No edit summary |
No edit summary |
||
Line 27: | Line 27: | ||
|''909.{{Overline|09}}'' | |''909.{{Overline|09}}'' | ||
|<nowiki>6 6|6 1</nowiki> | |<nowiki>6 6|6 1</nowiki> | ||
| | | | ||
|- | |- | ||
Line 60: | Line 36: | ||
| |<nowiki>5 5|5 1</nowiki> | | |<nowiki>5 5|5 1</nowiki> | ||
| | | | | | ||
|- | |- | ||
| | | | ||
Line 85: | Line 45: | ||
| | | | ||
|- | |- | ||
| |17\150 | |||
| |17\ | |||
| | | | | | ||
| | | | | | ||
Line 116: | Line 52: | ||
| |<nowiki>4 4|4 1</nowiki> | | |<nowiki>4 4|4 1</nowiki> | ||
| |L/s = 4 | | |L/s = 4 | ||
|- | |- | ||
| | | | | | ||
Line 428: | Line 324: | ||
| |<nowiki>13 13|13 6</nowiki> | | |<nowiki>13 13|13 6</nowiki> | ||
| |13;6 Superdiatonic 1/13-tone | | |13;6 Superdiatonic 1/13-tone | ||
|- | |- | ||
| |9\80 | | |9\80 | ||
Line 492: | Line 332: | ||
| |<nowiki>2 2|2 1</nowiki> | | |<nowiki>2 2|2 1</nowiki> | ||
| |<span style="display: block; text-align: left;">'''[BOUNDARY OF PROPRIETY: smaller generators are strictly proper]'''</span> | | |<span style="display: block; text-align: left;">'''[BOUNDARY OF PROPRIETY: smaller generators are strictly proper]'''</span> | ||
|- | |- | ||
| | | | ||
Line 916: | Line 612: | ||
| |<nowiki>7 7|7 5</nowiki> | | |<nowiki>7 7|7 5</nowiki> | ||
| | | | | | ||
|- | |- | ||
| |19\170 | | |19\170 | ||
Line 948: | Line 620: | ||
| |<nowiki>4 4|4 3</nowiki> | | |<nowiki>4 4|4 3</nowiki> | ||
| | | | | | ||
|- | |- | ||
| | | | ||
Line 963: | Line 627: | ||
|''893.506…'' | |''893.506…'' | ||
|<nowiki>9 9|9 7</nowiki> | |<nowiki>9 9|9 7</nowiki> | ||
| | | | ||
|- | |- | ||
Line 979: | Line 635: | ||
|''893.023…'' | |''893.023…'' | ||
|<nowiki>5 5|5 4</nowiki> | |<nowiki>5 5|5 4</nowiki> | ||
| | | | ||
|- | |- |
Revision as of 14:00, 9 July 2022
5ed100, or the stellar magnitude tuning, is an equal-step tuning with each pitch being about 2.512 times larger than the other, the number known as the Pogson's ratio.
Theory
The tuning is pretty meaningless as far as pitches go, since there's only 7-8 steps of it in the entire human hearing range, but it has a real life equivalence to astronomy - each step of it is known as the Pogson's ratio and it has an application of being the factor which sets two stars being 1 magnitude apart. This means subdividing it makes a meaningful major tenth of 1594.525 cents.
Scale tree
Generator | Generator size (cents) | Generator size (ed4\3) | Pentachord steps | Comments | ||
---|---|---|---|---|---|---|
4\35 | 911.157… | 914.285… | 1 1|1 0 | |||
25\220 | 905.980… | 909.09 | 6 6|6 1 | |||
21\185 | 905.000… | 908.108 | 5 5|5 1 | |||
38\335 | 904.357… | 907.462… | 9 9|9 2 | |||
17\150 | 903.564… | 906.6 | 4 4|4 1 | L/s = 4 | ||
30\265 | 902.561… | 905.660… | 7 7|7 2 | |||
73\645 | 902.328… | 905.426… | 17 17|17 5 | |||
43\380 | 902.165… | 905.263… | 10 10|10 3 | |||
56\495 | 901.953… | 905.05 | 13 13|13 4 | |||
69\610 | 901.921… | 904.918… | 16 16|16 5 | |||
82\725 | 901.731… | 904.827… | 19 19|19 6 | |||
95\840 | 901.666… | 904.761… | 22 22|22 7 | |||
901.662… | 904.758… | π π|π 1 | L/s = π | |||
108\955 | 901.616… | 904.712… | 25 25|25 8 | |||
121\1070 | 901.577… | 904.672… | 28 28|28 9 | 28;9 Superdiatonic 1/28-tone | ||
134\1185 | 901.546… | 904.642… | 31 31|31 10 | |||
13\115 | 901.235… | 904.347… | 3 3|3 1 | Terra Rubra 1/3-tone | ||
126\1115 | 900.942… | 904.035… | 29 29|29 10 | Terra Rubra 1/29-tone | ||
113\1000 | 900.906… | 904 | 26 26|26 9 | Terra Rubra 1/26-tone | ||
100\885 | 900.861… | 903.954… | 23 23|23 8 | |||
87\770 | 900.803… | 903.896… | 20 20|20 7 | |||
74\655 | 900.724… | 903.816… | 17 17|17 6 | Terra Rubra 1/17-tone | ||
61\840 | 915 | 900.611… | 14 14|14 5 | Terra Rubra 1/14-tone | ||
109\965 | 914.685… | 900.535… | 25 25|25 9 | Terra Rubra 1/25-tone | ||
48\425 | 900.437… | 903.529… | 11 11|11 4 | Terra Rubra 1/11-tone | ||
900.324… | 903.415… | e e|e 1 | L/s = e | |||
35\310 | 900.135… | 903.225… | 8 8|8 3 | Terra Rubra 1/8-tone | ||
92\815 | 899.977… | 903.067… | 21 21|21 8 | 21;8 Superdiatonic 1/21-tone | ||
899.950… | 903.040… | φ+1 φ+1|φ+1 1 | Split φ superdiatonic relation (34;13 - 55;21 - 89;34 - 144;55 - 233;89 - 377;144 - 610;233..) | |||
57\505 | 899.880… | 902.970… | 13 13|13 5 | 13;5 Superdiatonic 1/13-tone | ||
79\700 | 899.767… | 902.857… | 18 18|18 7 | |||
22\195 | 899.475… | 902.564… | 5 5|5 2 | Terra Rubra 1/5-tone | ||
75\665 | 899.168… | 902.255… | 17 17|17 7 | 17;7 Superdiatonic 1/17-tone | ||
53\470 | 899.040… | 902.127… | 12 12|12 5 | |||
31\275 | 898.732… | 901.81 | 7 7|7 3 | 7;3 Superdiatonic 1/7-tone | ||
71\630 | 898.502… | 901.587… | 16 16|16 7 | |||
40\355 | 898.324… | 901.408… | 9 9|9 4 | 9;4 Superdiatonic 1/9-tone | ||
49\435 | 898.066… | 901.149… | 11 11|11 5 | 11;5 Superdiatonic 1/11-tone | ||
58\515 | 897.888… | 900.970… | 13 13|13 6 | 13;6 Superdiatonic 1/13-tone | ||
9\80 | 896.920… | 900 | 2 2|2 1 | [BOUNDARY OF PROPRIETY: smaller generators are strictly proper] | ||
68\605 | 896.096… | 899.173… | 15 15|15 8 | |||
59\525 | 895.971… | 899.047… | 13 13|13 7 | Terra Rubra 1/13-tone | ||
50\445 | 895.800… | 898.876… | 11 11|11 6 | Terra Rubra 1/11-tone | ||
41\365 | 895.555… | 898.630… | 9 9|9 5 | Terra Rubra 1/9-tone | ||
32\285 | 895.172… | 898.245… | 7 7|7 4 | Terra Rubra 1/7-tone (the 'Commatic' version of Terra Rubra, because its high accuracy of the 16/15 interval, the note '2b') | ||
895.030… | 898.102… | √3 √3|√3 1 | ||||
55\490 | 894.886… | 897.959… | 12 12|12 7 | |||
78\695 | 894.769… | 897.841… | 17 17|17 10 | Terra Rubra 1/17-tone | ||
23\205 | 894.489… | 897.560… | 5 5|5 3 | 5;3 Golden Terra Rubra 1/5-tone | ||
83\740 | 894.227… | 897.297 | 18 18|18 11 | |||
60\535 | 894.126… | 897.196… | 13 13|13 8 | 13;8 Golden Terra Rubra 1/13-tone | ||
894.064… | 897.133… | φ φ|φ 1 | GOLDEN Terra Rubra (L/s = φ) | |||
97\865 | 894.040… | 897.109… | 21 21|21 13 | 21;13 Golden Terra Rubra 1/21-tone | ||
37\330 | 893.900… | 896.96 | 8 8|8 5 | 8;5 Golden Terra Rubra 1/8-tone | ||
88\785 | 893.746… | 896.815… | 19 19|19 12 | |||
51\455 | 893.635… | 896.703… | 11 11|11 7 | 11;7 Superdiatonic 1/11-tone | ||
893.629… | 896.697… | π π|π 2 | ||||
116\1035 | 893.550… | 896.618… | 25 25|25 16 | 25;16 Superdiatonic 1/25-tone | ||
65\580 | 893.484… | 896.551… | 14 14|14 9 | 14;9 Superdiatonic 1/14-tone | ||
79\705 | 893.386… | 896.453… | 17 17|17 11 | 17;11 Superdiatonic 1/17-tone | ||
93\830 | 893.318… | 896.385… | 20 20|20 13 | |||
107\955 | 893.268… | 896.335… | 23 23|23 15 | |||
121\1080 | 893.229… | 896.296 | 26 26|26 17 | 26;17 Superdiatonic 1/26-tone | ||
135\1205 | 893.198… | 896.265… | 29 29|29 19 | 29;19 Superdiatonic 1/29-tone | ||
14\25 | 892.934… | 896 | 3 3|3 2 | 3;2 Golden Terra Rubra 1/3-tone | ||
145\1295 | 892.688… | 895.752… | 31 31|31 21 | 31;21 Superdiatonic 1/31-tone | ||
131\1170 | 892.661… | 895.726… | 28 28|28 19 | 28;19 Superdiatonic 1/28-tone | ||
117\1045 | 892.629… | 895.693… | 25 25|25 17 | |||
103\920 | 892.587… | 895.652… | 22 22|22 15 | |||
89\795 | 892.533… | 895.579… | 19 19|19 13 | |||
75\670 | 892.458… | 895.522… | 16 16|16 11 | |||
61\545 | 892.349… | 895.412… | 13 13|13 9 | |||
47\420 | 892.174… | 895.238… | 10 10|10 7 | |||
80\715 | 892.042… | 895.104… | 17 17|17 12 | |||
33\295 | 891.853… | 894.915… | 7 7|7 5 | |||
19\170 | 891.058… | 894.117… | 4 4|4 3 | |||
43\385 | 890.449… | 893.506… | 9 9|9 7 | |||
24\215 | 889.967… | 893.023… | 5 5|5 4 | |||
29\260 | 889.254… | 892.307… | 6 6|6 5 | |||
5\45 | 885.847… | 888.8 | 1 1|1 1 |
Tempered commas
Astronomers might sometimes round 2.512 to 2.5, which leads to confusion with the other 2.5 - that is the logarithm multiplier required for base-10 logarithm conversion, with the formula being involved 2.5 log10(m1 - m2). The factor of 2.5 is simply coincidentally close enough to the 5th root of 100.
If this is taken as a comma to be tempered, it results in 100 / 97.65625 = 1.024 = 128/125, the lesser diesis.
References
- Wikipedia Contributors, Magnitude (astronomy).