39edo: Difference between revisions
Jump to navigation
Jump to search
Wikispaces>xenwolf **Imported revision 597693168 - Original comment: removed tel links** |
Wikispaces>TallKite **Imported revision 607131469 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User: | : This revision was by author [[User:TallKite|TallKite]] and made on <tt>2017-02-24 17:21:16 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>607131469</tt>.<br> | ||
: The revision comment was: <tt> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
<h4>Original Wikitext content:</h4> | <h4>Original Wikitext content:</h4> | ||
Line 24: | Line 24: | ||
* **v** = Semiflat (1/5-tone down) || | * **v** = Semiflat (1/5-tone down) || | ||
||~ **Degrees** ||~ ** | ||~ **Degrees** ||~ **Cents size** ||~ **Armodue note** ||||~ [[xenharmonic/Ups and Downs Notation|ups and]] | ||
[[xenharmonic/Ups and Downs Notation|downs]] | |||
[[xenharmonic/Ups and Downs Notation|notation]] ||~ **[[xenharmonic/Nearest just interval|Nearest Just I]]nterval** ||~ **Cents value** ||~ **Error** ||~ 11-limit Ratio Assuming | |||
<39 62 91 110 135| [[Val]] || | <39 62 91 110 135| [[Val]] || | ||
|| 0 || 1 || | || 0 || 0 || 1 ||= P1 ||= perfect unison || 1/1 || 0 || None || 1/1 || | ||
|| 1 || 1‡ (9#) || | || 1 || 30.7692 || 1‡ (9#) ||= ^1 ||= up unison || 57/56 || 30.6421 || +0.1271 || || | ||
|| 2 || 2b || | || 2 || 61.5385 || 2b ||= m2 ||= minor 2nd || 29/28 || 60.7513 || +0.7872 || || | ||
|| 3 || 1# || | || 3 || 92.3077 || 1# ||= ^m2 ||= upminor 2nd || 39/37 || 91.1386 || +1.1691 || || | ||
|| 4 || 2v || | || 4 || 123.0769 || 2v ||= v~2 ||= downmid 2nd || 44/41 || 122.2555 || +0.8214 || || | ||
|| 5 | || 5 || 153.8462 || 2 ||= ^~2 ||= upmid 2nd || 35/32 || 155.1396 || -1.2934 || 12/11, 11/10 || | ||
|| 6 || 2‡ || | || 6 || 184.6154 || 2‡ ||= vM2 ||= downmajor 2nd || 10/9 || 182.4037 || +2.2117 || 10/9 || | ||
|| 7**·** || 3b || | || 7**·** || 215.3846 || 3b ||= M2 ||= major 2nd || 17/15 || 216.6867 || -1.3021 || 8/7, 9/8 || | ||
|| 8 || 2# || | || 8 || 246.1538 || 2# ||= ^M2, | ||
|| 9 || 3v || | vm3 ||= upmajor 2nd, | ||
|| 10 | downminor 3rd || 15/13 || 247.7411 || -1.5873 || || | ||
|| 11 || 3‡ || | || 9 || 276.9231 || 3v ||= m3 ||= minor 3rd || 27/23 || 277.5907 || -0.6676 || 7/6 || | ||
|| 12**·** | || 10 || 307.6923 || 3 ||= ^m3 ||= upminor 3rd || 43/36 || 307.6077 || +0.0846 || 6/5 || | ||
|| 13 || 3# || | || 11 || 338.4615 || 3‡ ||= v~3 ||= downmid 3rd || 17/14 || 336.1295 || +2.332 || 11/9 || | ||
|| 14 || 4v (5b) || | || 12**·** || 369.2308 || 4b ||= ^~3 ||= upmid 3rd || 26/21 || 369.7468 || -0.516 || || | ||
|| 15 || 4 || | || 13 || 400 || 3# ||= vM3 ||= downmajor 3rd || 34/27 || 399.0904 || +0.9096 || 5/4 || | ||
|| 16 || 4‡ (5v) || | || 14 || 430.7692 || 4v (5b) ||= M3 ||= major 3rd || 41/32 || 429.0624 || +1.7068 || 9/7, 14/11 || | ||
|| 17**·** | || 15 || 461.5385 || 4 ||= v4 ||= down 4th || 30/23 || 459.9944 || +1.5441 || || | ||
|| 18 || 5‡ (4#) || | || 16 || 492.3077 || 4‡ (5v) ||= P4 ||= perfect 4th || 85/64 || 491.2691 || +1.0386 || 4/3 || | ||
|| 19 | || 17**·** || 523.0769 || 5 ||= ^4 ||= up 4th || 23/17 || 523.3189 || -0.242 || || | ||
|| 20 || 5# || | || 18 || 553.8462 || 5‡ (4#) ||= ^^4 ||= double-up 4th || 11/8 || 551.3179 || +2.5283 || 11/8 || | ||
|| 21 | || 19 || 584.6154 || 6b ||= vvA4, | ||
|| 22**·** || 6 || | ^d5 ||= double-down aug 4th, updim 5th || 7/5 || 582.5122 || +2.1032 || 7/5 || | ||
|| 23 | || 20 || 615.3846 || 5# ||= vA4, | ||
|| 24 || 7b || | ^^d5 ||= downaug 4th, double-up dim 5th || 10/7 || 617.4878 || -2.1032 || 10/7 || | ||
|| 25 | || 21 || 646.1538 || 6v ||= vv5 ||= double-down 5th || 16/11 || 648.6821 || -2.5283 || 16/11 || | ||
|| 26 || 7v || | || 22**·** || 676.9231 || 6 ||= v5 ||= down 5th || 34/23 || 676.6811 || +0.242 || || | ||
|| 27**·** || 7 || | || 23 || 707.6923 || 6‡ ||= P5 ||= perfect 5th || 128/85 || 708.7309 || -1.0386 || 3/2 || | ||
|| 28 | || 24 || 738.4615 || 7b ||= ^5 ||= up 5th || 23/15 || 740.0056 || -1.5441 || || | ||
|| 29 || 8b || | || 25 || 769.2308 || 6# ||= m6 ||= minor 6th || 64/41 || 770.9376 || -1.7068 || 14/9, 11/7 || | ||
|| 30 | || 26 || 800 || 7v ||= ^m6 ||= upminor 6th || 27/17 || 800.9096 || -0.9096 || 8/5 || | ||
|| 31 || 8v || | || 27**·** || 830.7692 || 7 ||= v~6 ||= downmid 6th || 21/13 || 830.2532 || +0.516 || || | ||
|| 32**·** | || 28 || 861.5385 || 7‡ ||= ^~6 ||= upmid 6th || 28/17 || 863.8705 || -2.332 || 18/11 || | ||
|| 33 || 8‡ || | || 29 || 892.3077 || 8b ||= vM6 ||= downmajor 6th || 72/43 || 892.3923 || -0.0846 || 5/3 || | ||
|| 34 || 9b || | || 30 || 923.0769 || 7# ||= M6 ||= major 6th || 46/27 || 922.4093 || +0.6676 || 12/7 || | ||
|| 35 || 8# || | || 31 || 953.8462 || 8v ||= ^M6, | ||
|| 36 || 9v (1b) || | vm7 ||= upmajor 6th, | ||
|| 37 | downminor 7th || 26/15 || 952.2589 || +1.5873 || || | ||
|| 38 || 9‡ (1v) || | || 32**·** || 984.6154 || 8 ||= m7 ||= minor 7th || 30/17 || 983.3133 || +1.3021 || 7/4, 16/9 || | ||
|| 39**··**(or 0) || 1 || | || 33 || 1015.3846 || 8‡ ||= ^m7 ||= upminor 7th || 9/5 || 1017.5963 || -2.2117 || 9/5 || | ||
|| 34 || 1046.1538 || 9b ||= v~7 ||= downmid 7th || 64/35 || 1044.8604 || +1.2934 || 11/6, 20/11 || | |||
|| 35 || 1076.9231 || 8# ||= ^~7 ||= upmid 7th || 41/22 || 1077.7445 || -0.8214 || || | |||
|| 36 || 1107.6923 || 9v (1b) ||= vM7 ||= downmajor 7th || 74/39 || 1108.8614 || -1.1691 || || | |||
|| 37 || 1138.4615 || 9 ||= M7 ||= major 7th || 56/29 || 1139.2487 || -0.7872 || || | |||
|| 38 || 1169.2308 || 9‡ (1v) ||= v8 ||= down-8ve || 112/57 || 1169.3579 || -0.1271 || || | |||
|| 39**··**(or 0) || 1200 || 1 ||= P8 ||= perfect 8ve || 2/1 || 1200 || None || || | |||
Chords can be named using ups and downs as C upminor, D downmajor seven, etc. See [[xenharmonic/Ups and Downs Notation#Chord%20names%20in%20other%20EDOs|Ups and Downs Notation - Chord names in other EDOs]]. | |||
==__Instruments (prototypes):__== | ==__Instruments (prototypes):__== | ||
Line 183: | Line 192: | ||
<tr> | <tr> | ||
<th><strong>Degrees</strong><br /> | <th><strong>Degrees</strong><br /> | ||
</th> | |||
<th><strong>Cents size</strong><br /> | |||
</th> | </th> | ||
<th><strong>Armodue note</strong><br /> | <th><strong>Armodue note</strong><br /> | ||
</th> | </th> | ||
<th>< | <th colspan="2"><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Ups%20and%20Downs%20Notation">ups and</a><br /> | ||
<a class="wiki_link" href="http://xenharmonic.wikispaces.com/Ups%20and%20Downs%20Notation">downs</a><br /> | |||
<a class="wiki_link" href="http://xenharmonic.wikispaces.com/Ups%20and%20Downs%20Notation">notation</a><br /> | |||
</th> | </th> | ||
<th><strong><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Nearest%20just%20interval">Nearest Just I</a>nterval</strong><br /> | <th><strong><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Nearest%20just%20interval">Nearest Just I</a>nterval</strong><br /> | ||
Line 199: | Line 212: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td>0<br /> | |||
</td> | |||
<td>0<br /> | <td>0<br /> | ||
</td> | </td> | ||
<td>1<br /> | <td>1<br /> | ||
</td> | </td> | ||
<td> | <td style="text-align: center;">P1<br /> | ||
</td> | |||
<td style="text-align: center;">perfect unison<br /> | |||
</td> | </td> | ||
<td>1/1<br /> | <td>1/1<br /> | ||
Line 216: | Line 233: | ||
<tr> | <tr> | ||
<td>1<br /> | <td>1<br /> | ||
</td> | |||
<td>30.7692<br /> | |||
</td> | </td> | ||
<td>1‡ (9#)<br /> | <td>1‡ (9#)<br /> | ||
</td> | </td> | ||
<td> | <td style="text-align: center;">^1<br /> | ||
</td> | |||
<td style="text-align: center;">up unison<br /> | |||
</td> | </td> | ||
<td>57/56<br /> | <td>57/56<br /> | ||
Line 232: | Line 253: | ||
<tr> | <tr> | ||
<td>2<br /> | <td>2<br /> | ||
</td> | |||
<td>61.5385<br /> | |||
</td> | </td> | ||
<td>2b<br /> | <td>2b<br /> | ||
</td> | </td> | ||
<td> | <td style="text-align: center;">m2<br /> | ||
</td> | |||
<td style="text-align: center;">minor 2nd<br /> | |||
</td> | </td> | ||
<td>29/28<br /> | <td>29/28<br /> | ||
Line 248: | Line 273: | ||
<tr> | <tr> | ||
<td>3<br /> | <td>3<br /> | ||
</td> | |||
<td>92.3077<br /> | |||
</td> | </td> | ||
<td>1#<br /> | <td>1#<br /> | ||
</td> | </td> | ||
<td> | <td style="text-align: center;">^m2<br /> | ||
</td> | |||
<td style="text-align: center;">upminor 2nd<br /> | |||
</td> | </td> | ||
<td>39/37<br /> | <td>39/37<br /> | ||
Line 264: | Line 293: | ||
<tr> | <tr> | ||
<td>4<br /> | <td>4<br /> | ||
</td> | |||
<td>123.0769<br /> | |||
</td> | </td> | ||
<td>2v<br /> | <td>2v<br /> | ||
</td> | </td> | ||
<td> | <td style="text-align: center;">v~2<br /> | ||
</td> | |||
<td style="text-align: center;">downmid 2nd<br /> | |||
</td> | </td> | ||
<td>44/41<br /> | <td>44/41<br /> | ||
Line 280: | Line 313: | ||
<tr> | <tr> | ||
<td>5<br /> | <td>5<br /> | ||
</td> | |||
<td>153.8462<br /> | |||
</td> | </td> | ||
<td>2<br /> | <td>2<br /> | ||
</td> | </td> | ||
<td> | <td style="text-align: center;">^~2<br /> | ||
</td> | |||
<td style="text-align: center;">upmid 2nd<br /> | |||
</td> | </td> | ||
<td>35/32<br /> | <td>35/32<br /> | ||
Line 296: | Line 333: | ||
<tr> | <tr> | ||
<td>6<br /> | <td>6<br /> | ||
</td> | |||
<td>184.6154<br /> | |||
</td> | </td> | ||
<td>2‡<br /> | <td>2‡<br /> | ||
</td> | </td> | ||
<td> | <td style="text-align: center;">vM2<br /> | ||
</td> | |||
<td style="text-align: center;">downmajor 2nd<br /> | |||
</td> | </td> | ||
<td>10/9<br /> | <td>10/9<br /> | ||
Line 312: | Line 353: | ||
<tr> | <tr> | ||
<td>7<strong>·</strong><br /> | <td>7<strong>·</strong><br /> | ||
</td> | |||
<td>215.3846<br /> | |||
</td> | </td> | ||
<td>3b<br /> | <td>3b<br /> | ||
</td> | </td> | ||
<td> | <td style="text-align: center;">M2<br /> | ||
</td> | |||
<td style="text-align: center;">major 2nd<br /> | |||
</td> | </td> | ||
<td>17/15<br /> | <td>17/15<br /> | ||
Line 328: | Line 373: | ||
<tr> | <tr> | ||
<td>8<br /> | <td>8<br /> | ||
</td> | |||
<td>246.1538<br /> | |||
</td> | </td> | ||
<td>2#<br /> | <td>2#<br /> | ||
</td> | </td> | ||
<td> | <td style="text-align: center;">^M2,<br /> | ||
vm3<br /> | |||
</td> | |||
<td style="text-align: center;">upmajor 2nd,<br /> | |||
downminor 3rd<br /> | |||
</td> | </td> | ||
<td>15/13<br /> | <td>15/13<br /> | ||
Line 344: | Line 395: | ||
<tr> | <tr> | ||
<td>9<br /> | <td>9<br /> | ||
</td> | |||
<td>276.9231<br /> | |||
</td> | </td> | ||
<td>3v<br /> | <td>3v<br /> | ||
</td> | </td> | ||
<td> | <td style="text-align: center;">m3<br /> | ||
</td> | |||
<td style="text-align: center;">minor 3rd<br /> | |||
</td> | </td> | ||
<td>27/23<br /> | <td>27/23<br /> | ||
Line 360: | Line 415: | ||
<tr> | <tr> | ||
<td>10<br /> | <td>10<br /> | ||
</td> | |||
<td>307.6923<br /> | |||
</td> | </td> | ||
<td>3<br /> | <td>3<br /> | ||
</td> | </td> | ||
<td> | <td style="text-align: center;">^m3<br /> | ||
</td> | |||
<td style="text-align: center;">upminor 3rd<br /> | |||
</td> | </td> | ||
<td>43/36<br /> | <td>43/36<br /> | ||
Line 376: | Line 435: | ||
<tr> | <tr> | ||
<td>11<br /> | <td>11<br /> | ||
</td> | |||
<td>338.4615<br /> | |||
</td> | </td> | ||
<td>3‡<br /> | <td>3‡<br /> | ||
</td> | </td> | ||
<td> | <td style="text-align: center;">v~3<br /> | ||
</td> | |||
<td style="text-align: center;">downmid 3rd<br /> | |||
</td> | </td> | ||
<td>17/14<br /> | <td>17/14<br /> | ||
Line 392: | Line 455: | ||
<tr> | <tr> | ||
<td>12<strong>·</strong><br /> | <td>12<strong>·</strong><br /> | ||
</td> | |||
<td>369.2308<br /> | |||
</td> | </td> | ||
<td>4b<br /> | <td>4b<br /> | ||
</td> | </td> | ||
<td> | <td style="text-align: center;">^~3<br /> | ||
</td> | |||
<td style="text-align: center;">upmid 3rd<br /> | |||
</td> | </td> | ||
<td>26/21<br /> | <td>26/21<br /> | ||
Line 408: | Line 475: | ||
<tr> | <tr> | ||
<td>13<br /> | <td>13<br /> | ||
</td> | |||
<td>400<br /> | |||
</td> | </td> | ||
<td>3#<br /> | <td>3#<br /> | ||
</td> | </td> | ||
<td> | <td style="text-align: center;">vM3<br /> | ||
</td> | |||
<td style="text-align: center;">downmajor 3rd<br /> | |||
</td> | </td> | ||
<td>34/27<br /> | <td>34/27<br /> | ||
Line 424: | Line 495: | ||
<tr> | <tr> | ||
<td>14<br /> | <td>14<br /> | ||
</td> | |||
<td>430.7692<br /> | |||
</td> | </td> | ||
<td>4v (5b)<br /> | <td>4v (5b)<br /> | ||
</td> | </td> | ||
<td> | <td style="text-align: center;">M3<br /> | ||
</td> | |||
<td style="text-align: center;">major 3rd<br /> | |||
</td> | </td> | ||
<td>41/32<br /> | <td>41/32<br /> | ||
Line 440: | Line 515: | ||
<tr> | <tr> | ||
<td>15<br /> | <td>15<br /> | ||
</td> | |||
<td>461.5385<br /> | |||
</td> | </td> | ||
<td>4<br /> | <td>4<br /> | ||
</td> | </td> | ||
<td> | <td style="text-align: center;">v4<br /> | ||
</td> | |||
<td style="text-align: center;">down 4th<br /> | |||
</td> | </td> | ||
<td>30/23<br /> | <td>30/23<br /> | ||
Line 456: | Line 535: | ||
<tr> | <tr> | ||
<td>16<br /> | <td>16<br /> | ||
</td> | |||
<td>492.3077<br /> | |||
</td> | </td> | ||
<td>4‡ (5v)<br /> | <td>4‡ (5v)<br /> | ||
</td> | </td> | ||
<td> | <td style="text-align: center;">P4<br /> | ||
</td> | |||
<td style="text-align: center;">perfect 4th<br /> | |||
</td> | </td> | ||
<td>85/64<br /> | <td>85/64<br /> | ||
Line 472: | Line 555: | ||
<tr> | <tr> | ||
<td>17<strong>·</strong><br /> | <td>17<strong>·</strong><br /> | ||
</td> | |||
<td>523.0769<br /> | |||
</td> | </td> | ||
<td>5<br /> | <td>5<br /> | ||
</td> | </td> | ||
<td> | <td style="text-align: center;">^4<br /> | ||
</td> | |||
<td style="text-align: center;">up 4th<br /> | |||
</td> | </td> | ||
<td>23/17<br /> | <td>23/17<br /> | ||
Line 488: | Line 575: | ||
<tr> | <tr> | ||
<td>18<br /> | <td>18<br /> | ||
</td> | |||
<td>553.8462<br /> | |||
</td> | </td> | ||
<td>5‡ (4#)<br /> | <td>5‡ (4#)<br /> | ||
</td> | </td> | ||
<td> | <td style="text-align: center;">^^4<br /> | ||
</td> | |||
<td style="text-align: center;">double-up 4th<br /> | |||
</td> | </td> | ||
<td>11/8<br /> | <td>11/8<br /> | ||
Line 504: | Line 595: | ||
<tr> | <tr> | ||
<td>19<br /> | <td>19<br /> | ||
</td> | |||
<td>584.6154<br /> | |||
</td> | </td> | ||
<td>6b<br /> | <td>6b<br /> | ||
</td> | </td> | ||
<td> | <td style="text-align: center;">vvA4,<br /> | ||
^d5<br /> | |||
</td> | |||
<td style="text-align: center;">double-down aug 4th, updim 5th<br /> | |||
</td> | </td> | ||
<td>7/5<br /> | <td>7/5<br /> | ||
Line 520: | Line 616: | ||
<tr> | <tr> | ||
<td>20<br /> | <td>20<br /> | ||
</td> | |||
<td>615.3846<br /> | |||
</td> | </td> | ||
<td>5#<br /> | <td>5#<br /> | ||
</td> | </td> | ||
<td> | <td style="text-align: center;">vA4,<br /> | ||
^^d5<br /> | |||
</td> | |||
<td style="text-align: center;">downaug 4th, double-up dim 5th<br /> | |||
</td> | </td> | ||
<td>10/7<br /> | <td>10/7<br /> | ||
Line 536: | Line 637: | ||
<tr> | <tr> | ||
<td>21<br /> | <td>21<br /> | ||
</td> | |||
<td>646.1538<br /> | |||
</td> | </td> | ||
<td>6v<br /> | <td>6v<br /> | ||
</td> | </td> | ||
<td> | <td style="text-align: center;">vv5<br /> | ||
</td> | |||
<td style="text-align: center;">double-down 5th<br /> | |||
</td> | </td> | ||
<td>16/11<br /> | <td>16/11<br /> | ||
Line 552: | Line 657: | ||
<tr> | <tr> | ||
<td>22<strong>·</strong><br /> | <td>22<strong>·</strong><br /> | ||
</td> | |||
<td>676.9231<br /> | |||
</td> | </td> | ||
<td>6<br /> | <td>6<br /> | ||
</td> | </td> | ||
<td> | <td style="text-align: center;">v5<br /> | ||
</td> | |||
<td style="text-align: center;">down 5th<br /> | |||
</td> | </td> | ||
<td>34/23<br /> | <td>34/23<br /> | ||
Line 568: | Line 677: | ||
<tr> | <tr> | ||
<td>23<br /> | <td>23<br /> | ||
</td> | |||
<td>707.6923<br /> | |||
</td> | </td> | ||
<td>6‡<br /> | <td>6‡<br /> | ||
</td> | </td> | ||
<td> | <td style="text-align: center;">P5<br /> | ||
</td> | |||
<td style="text-align: center;">perfect 5th<br /> | |||
</td> | </td> | ||
<td>128/85<br /> | <td>128/85<br /> | ||
Line 584: | Line 697: | ||
<tr> | <tr> | ||
<td>24<br /> | <td>24<br /> | ||
</td> | |||
<td>738.4615<br /> | |||
</td> | </td> | ||
<td>7b<br /> | <td>7b<br /> | ||
</td> | </td> | ||
<td> | <td style="text-align: center;">^5<br /> | ||
</td> | |||
<td style="text-align: center;">up 5th<br /> | |||
</td> | </td> | ||
<td>23/15<br /> | <td>23/15<br /> | ||
Line 600: | Line 717: | ||
<tr> | <tr> | ||
<td>25<br /> | <td>25<br /> | ||
</td> | |||
<td>769.2308<br /> | |||
</td> | </td> | ||
<td>6#<br /> | <td>6#<br /> | ||
</td> | </td> | ||
<td> | <td style="text-align: center;">m6<br /> | ||
</td> | |||
<td style="text-align: center;">minor 6th<br /> | |||
</td> | </td> | ||
<td>64/41<br /> | <td>64/41<br /> | ||
Line 616: | Line 737: | ||
<tr> | <tr> | ||
<td>26<br /> | <td>26<br /> | ||
</td> | |||
<td>800<br /> | |||
</td> | </td> | ||
<td>7v<br /> | <td>7v<br /> | ||
</td> | </td> | ||
<td> | <td style="text-align: center;">^m6<br /> | ||
</td> | |||
<td style="text-align: center;">upminor 6th<br /> | |||
</td> | </td> | ||
<td>27/17<br /> | <td>27/17<br /> | ||
Line 632: | Line 757: | ||
<tr> | <tr> | ||
<td>27<strong>·</strong><br /> | <td>27<strong>·</strong><br /> | ||
</td> | |||
<td>830.7692<br /> | |||
</td> | </td> | ||
<td>7<br /> | <td>7<br /> | ||
</td> | </td> | ||
<td> | <td style="text-align: center;">v~6<br /> | ||
</td> | |||
<td style="text-align: center;">downmid 6th<br /> | |||
</td> | </td> | ||
<td>21/13<br /> | <td>21/13<br /> | ||
Line 648: | Line 777: | ||
<tr> | <tr> | ||
<td>28<br /> | <td>28<br /> | ||
</td> | |||
<td>861.5385<br /> | |||
</td> | </td> | ||
<td>7‡<br /> | <td>7‡<br /> | ||
</td> | </td> | ||
<td> | <td style="text-align: center;">^~6<br /> | ||
</td> | |||
<td style="text-align: center;">upmid 6th<br /> | |||
</td> | </td> | ||
<td>28/17<br /> | <td>28/17<br /> | ||
Line 664: | Line 797: | ||
<tr> | <tr> | ||
<td>29<br /> | <td>29<br /> | ||
</td> | |||
<td>892.3077<br /> | |||
</td> | </td> | ||
<td>8b<br /> | <td>8b<br /> | ||
</td> | </td> | ||
<td> | <td style="text-align: center;">vM6<br /> | ||
</td> | |||
<td style="text-align: center;">downmajor 6th<br /> | |||
</td> | </td> | ||
<td>72/43<br /> | <td>72/43<br /> | ||
Line 680: | Line 817: | ||
<tr> | <tr> | ||
<td>30<br /> | <td>30<br /> | ||
</td> | |||
<td>923.0769<br /> | |||
</td> | </td> | ||
<td>7#<br /> | <td>7#<br /> | ||
</td> | </td> | ||
<td> | <td style="text-align: center;">M6<br /> | ||
</td> | |||
<td style="text-align: center;">major 6th<br /> | |||
</td> | </td> | ||
<td>46/27<br /> | <td>46/27<br /> | ||
Line 696: | Line 837: | ||
<tr> | <tr> | ||
<td>31<br /> | <td>31<br /> | ||
</td> | |||
<td>953.8462<br /> | |||
</td> | </td> | ||
<td>8v<br /> | <td>8v<br /> | ||
</td> | </td> | ||
<td> | <td style="text-align: center;">^M6,<br /> | ||
vm7<br /> | |||
</td> | |||
<td style="text-align: center;">upmajor 6th,<br /> | |||
downminor 7th<br /> | |||
</td> | </td> | ||
<td>26/15<br /> | <td>26/15<br /> | ||
Line 712: | Line 859: | ||
<tr> | <tr> | ||
<td>32<strong>·</strong><br /> | <td>32<strong>·</strong><br /> | ||
</td> | |||
<td>984.6154<br /> | |||
</td> | </td> | ||
<td>8<br /> | <td>8<br /> | ||
</td> | </td> | ||
<td> | <td style="text-align: center;">m7<br /> | ||
</td> | |||
<td style="text-align: center;">minor 7th<br /> | |||
</td> | </td> | ||
<td>30/17<br /> | <td>30/17<br /> | ||
Line 728: | Line 879: | ||
<tr> | <tr> | ||
<td>33<br /> | <td>33<br /> | ||
</td> | |||
<td>1015.3846<br /> | |||
</td> | </td> | ||
<td>8‡<br /> | <td>8‡<br /> | ||
</td> | </td> | ||
<td> | <td style="text-align: center;">^m7<br /> | ||
</td> | |||
<td style="text-align: center;">upminor 7th<br /> | |||
</td> | </td> | ||
<td>9/5<br /> | <td>9/5<br /> | ||
Line 744: | Line 899: | ||
<tr> | <tr> | ||
<td>34<br /> | <td>34<br /> | ||
</td> | |||
<td>1046.1538<br /> | |||
</td> | </td> | ||
<td>9b<br /> | <td>9b<br /> | ||
</td> | </td> | ||
<td> | <td style="text-align: center;">v~7<br /> | ||
</td> | |||
<td style="text-align: center;">downmid 7th<br /> | |||
</td> | </td> | ||
<td>64/35<br /> | <td>64/35<br /> | ||
Line 760: | Line 919: | ||
<tr> | <tr> | ||
<td>35<br /> | <td>35<br /> | ||
</td> | |||
<td>1076.9231<br /> | |||
</td> | </td> | ||
<td>8#<br /> | <td>8#<br /> | ||
</td> | </td> | ||
<td> | <td style="text-align: center;">^~7<br /> | ||
</td> | |||
<td style="text-align: center;">upmid 7th<br /> | |||
</td> | </td> | ||
<td>41/22<br /> | <td>41/22<br /> | ||
Line 776: | Line 939: | ||
<tr> | <tr> | ||
<td>36<br /> | <td>36<br /> | ||
</td> | |||
<td>1107.6923<br /> | |||
</td> | </td> | ||
<td>9v (1b)<br /> | <td>9v (1b)<br /> | ||
</td> | </td> | ||
<td> | <td style="text-align: center;">vM7<br /> | ||
</td> | |||
<td style="text-align: center;">downmajor 7th<br /> | |||
</td> | </td> | ||
<td>74/39<br /> | <td>74/39<br /> | ||
Line 792: | Line 959: | ||
<tr> | <tr> | ||
<td>37<br /> | <td>37<br /> | ||
</td> | |||
<td>1138.4615<br /> | |||
</td> | </td> | ||
<td>9<br /> | <td>9<br /> | ||
</td> | </td> | ||
<td> | <td style="text-align: center;">M7<br /> | ||
</td> | |||
<td style="text-align: center;">major 7th<br /> | |||
</td> | </td> | ||
<td>56/29<br /> | <td>56/29<br /> | ||
Line 808: | Line 979: | ||
<tr> | <tr> | ||
<td>38<br /> | <td>38<br /> | ||
</td> | |||
<td>1169.2308<br /> | |||
</td> | </td> | ||
<td>9‡ (1v)<br /> | <td>9‡ (1v)<br /> | ||
</td> | </td> | ||
<td> | <td style="text-align: center;">v8<br /> | ||
</td> | |||
<td style="text-align: center;">down-8ve<br /> | |||
</td> | </td> | ||
<td>112/57<br /> | <td>112/57<br /> | ||
Line 824: | Line 999: | ||
<tr> | <tr> | ||
<td>39<strong>··</strong>(or 0)<br /> | <td>39<strong>··</strong>(or 0)<br /> | ||
</td> | |||
<td>1200<br /> | |||
</td> | </td> | ||
<td>1<br /> | <td>1<br /> | ||
</td> | </td> | ||
<td> | <td style="text-align: center;">P8<br /> | ||
</td> | |||
<td style="text-align: center;">perfect 8ve<br /> | |||
</td> | </td> | ||
<td>2/1<br /> | <td>2/1<br /> | ||
Line 840: | Line 1,019: | ||
</table> | </table> | ||
Chords can be named using ups and downs as C upminor, D downmajor seven, etc. See <a class="wiki_link" href="http://xenharmonic.wikispaces.com/Ups%20and%20Downs%20Notation#Chord%20names%20in%20other%20EDOs">Ups and Downs Notation - Chord names in other EDOs</a>.<br /> | |||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule:4:&lt;h2&gt; --><h2 id="toc2"><a name="x39 tone equal temperament-Instruments (prototypes):"></a><!-- ws:end:WikiTextHeadingRule:4 --><u>Instruments (prototypes):</u></h2> | <!-- ws:start:WikiTextHeadingRule:4:&lt;h2&gt; --><h2 id="toc2"><a name="x39 tone equal temperament-Instruments (prototypes):"></a><!-- ws:end:WikiTextHeadingRule:4 --><u>Instruments (prototypes):</u></h2> | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextLocalImageRule: | <!-- ws:start:WikiTextLocalImageRule:866:&lt;img src=&quot;/file/view/TECLADO%2039-EDD.PNG/390052498/800x467/TECLADO%2039-EDD.PNG&quot; alt=&quot;&quot; title=&quot;&quot; style=&quot;height: 467px; width: 800px;&quot; /&gt; --><img src="/file/view/TECLADO%2039-EDD.PNG/390052498/800x467/TECLADO%2039-EDD.PNG" alt="TECLADO 39-EDD.PNG" title="TECLADO 39-EDD.PNG" style="height: 467px; width: 800px;" /><!-- ws:end:WikiTextLocalImageRule:866 --><br /> | ||
<em>An illustrative image of a 39-ED2 keyboard</em><br /> | <em>An illustrative image of a 39-ED2 keyboard</em><br /> | ||
<!-- ws:start:WikiTextLocalImageRule: | <!-- ws:start:WikiTextLocalImageRule:867:&lt;img src=&quot;http://xenharmonic.wikispaces.com/file/view/Custom_700mm_5-str_Tricesanonaphonic_Guitar.png/258445130/826x203/Custom_700mm_5-str_Tricesanonaphonic_Guitar.png&quot; alt=&quot;39-EDD fretboard visualization&quot; title=&quot;39-EDD fretboard visualization&quot; style=&quot;height: 203px; width: 826px;&quot; /&gt; --><table class="captionBox"><tr><td class="captionedImage"><img src="http://xenharmonic.wikispaces.com/file/view/Custom_700mm_5-str_Tricesanonaphonic_Guitar.png/258445130/826x203/Custom_700mm_5-str_Tricesanonaphonic_Guitar.png" alt="Custom_700mm_5-str_Tricesanonaphonic_Guitar.png" title="Custom_700mm_5-str_Tricesanonaphonic_Guitar.png" style="height: 203px; width: 826px;" /></td></tr><tr><td class="imageCaption">39-EDD fretboard visualization</td></tr></table><!-- ws:end:WikiTextLocalImageRule:867 --><br /> | ||
<br /> | <br /> | ||
<br /> | <br /> |
Revision as of 17:21, 24 February 2017
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author TallKite and made on 2017-02-24 17:21:16 UTC.
- The original revision id was 607131469.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
=<span style="color: #9900ab; font-family: 'Times New Roman',Times,serif; font-size: 113%;">39 tone equal temperament</span>= **39-EDO, 39-ED2** or **39-tET** divides the Octave (Ditave 2/1) in 39 equal parts of 30.76923 Cents each one. If we take 22\39 as a fifth, can be used in Mavila Temperament, and from that point of view seems to have attracted the attention of the Armodue school, an Italian group that use the scheme of [[xenharmonic/7L 2s|Superdiatonic]] LLLsLLLLs like a basical scale for notation and theory, suited in [[xenharmonic/16edo|16-ED2]], and allied systems: [[xenharmonic/25edo|25-ED2]] [1/3-tone 3;2]; [[xenharmonic/41edo|41-ED2]] [1/5-tone 5;3]; and [[xenharmonic/57edo|57]] ED2 [1/7-tone 7;4]. **Hornbostel Temperaments** is included too with: [[xenharmonic/23edo|23-ED2]] [1/3-tone 3;1]; 39-ED2 [1/5-tone 5;2] & [[xenharmonic/62edo|62-ED2]] [1/8-tone 8;3]. [[223edo|223-ED2]], the best accuracy for Hornbostel temperament fits very good with Armodue like 1/29-tone 29;10 version. Note that [[101edo|101]], [[131edo|131]], [[177edo|177]] & [[200edo|200]] ED2s are tempered systems that [[http://www.h-pi.com/eop-ogolevets.html|Alexei Ogolevets]] (Ukraine, 1891 - 1967) was proposing in his List of Temperaments, in which the Armodue system fits very well in all these. However, its 23\39 fifth, 5.737 Cents sharp, is in much better tune than the Mavila fifth which like all Mavila fifths is very, very flat, in this case, 25 Cents flat. Together with its best third which is the familiar 400 cents of 12 equal, we get a system which tempers out the diesis, 128/125, and the amity comma, 1600000/1594323. We have two choices for a map for 7, but the sharp one works better with the 3 and 5, which adds 64/63 and 126/125 to the list. Tempering out both 128/125 and 64/63 makes 39EDO, in some few ways, allied to 12-ET in supporting augene temperament, and is in fact, an excellent choice for an augene tuning, but one difference is that 39 has a fine 11, and adding it to consideration we find that 39-EDO tempers out 99/98 and 121/120 also. This better choice for 39et is <39 62 91 110 135|. A particular anecdote with this 39 divisions per 2/1 was made in the Teliochordon, in 1788 by Charles Clagget (Ireland, 1740? - 1820), a little extract [[http://ml.oxfordjournals.org/content/76/2/291.extract.jpg|here]]. As a superpyth system, 39edo is intermediate between 17edo and 22edo (39 being 17+22). While 17edo is superb for melody (as documented by George Secor), it doesn't approximate the 5th harmonic at all and only poorly approximates the 7th. 22edo is much better for 5-limit and 7-limit harmony but is less effective for melody because the "diatonic semitone" is quarter-tone-sized, which results in a very strange-sounding diatonic scale. 39edo offers a compromise, since it still supports good 5- and 7-limit harmonies (though less close than 22edo), while at the same time having a diatonic semitone of 61.5 cents (the ideal diatonic semitone for melody being somewhere in between 60 and 80 cents, by Secor's estimates). 39edo offers not one, but many, possible ways of extending tonality beyond the diatonic scale, even if it doesn't do as good of a job at approximating JI as some other systems do. Because it can also approximate mavila as well as "anti-mavila" (oneirotonic), the latter of which it inherits from [[13edo]], this makes 39edo an extremely versatile temperament usable in a wide range of situations (both harmonic and inharmonic). ==__**39-EDO Intervals**__== || **ARMODUE NOMENCLATURE 5;2 RELATION** || || * **‡** = Semisharp (1/5-tone up) * **b** = Flat (3/5-tone down) * **#** = Sharp (3/5-tone up) * **v** = Semiflat (1/5-tone down) || ||~ **Degrees** ||~ **Cents size** ||~ **Armodue note** ||||~ [[xenharmonic/Ups and Downs Notation|ups and]] [[xenharmonic/Ups and Downs Notation|downs]] [[xenharmonic/Ups and Downs Notation|notation]] ||~ **[[xenharmonic/Nearest just interval|Nearest Just I]]nterval** ||~ **Cents value** ||~ **Error** ||~ 11-limit Ratio Assuming <39 62 91 110 135| [[Val]] || || 0 || 0 || 1 ||= P1 ||= perfect unison || 1/1 || 0 || None || 1/1 || || 1 || 30.7692 || 1‡ (9#) ||= ^1 ||= up unison || 57/56 || 30.6421 || +0.1271 || || || 2 || 61.5385 || 2b ||= m2 ||= minor 2nd || 29/28 || 60.7513 || +0.7872 || || || 3 || 92.3077 || 1# ||= ^m2 ||= upminor 2nd || 39/37 || 91.1386 || +1.1691 || || || 4 || 123.0769 || 2v ||= v~2 ||= downmid 2nd || 44/41 || 122.2555 || +0.8214 || || || 5 || 153.8462 || 2 ||= ^~2 ||= upmid 2nd || 35/32 || 155.1396 || -1.2934 || 12/11, 11/10 || || 6 || 184.6154 || 2‡ ||= vM2 ||= downmajor 2nd || 10/9 || 182.4037 || +2.2117 || 10/9 || || 7**·** || 215.3846 || 3b ||= M2 ||= major 2nd || 17/15 || 216.6867 || -1.3021 || 8/7, 9/8 || || 8 || 246.1538 || 2# ||= ^M2, vm3 ||= upmajor 2nd, downminor 3rd || 15/13 || 247.7411 || -1.5873 || || || 9 || 276.9231 || 3v ||= m3 ||= minor 3rd || 27/23 || 277.5907 || -0.6676 || 7/6 || || 10 || 307.6923 || 3 ||= ^m3 ||= upminor 3rd || 43/36 || 307.6077 || +0.0846 || 6/5 || || 11 || 338.4615 || 3‡ ||= v~3 ||= downmid 3rd || 17/14 || 336.1295 || +2.332 || 11/9 || || 12**·** || 369.2308 || 4b ||= ^~3 ||= upmid 3rd || 26/21 || 369.7468 || -0.516 || || || 13 || 400 || 3# ||= vM3 ||= downmajor 3rd || 34/27 || 399.0904 || +0.9096 || 5/4 || || 14 || 430.7692 || 4v (5b) ||= M3 ||= major 3rd || 41/32 || 429.0624 || +1.7068 || 9/7, 14/11 || || 15 || 461.5385 || 4 ||= v4 ||= down 4th || 30/23 || 459.9944 || +1.5441 || || || 16 || 492.3077 || 4‡ (5v) ||= P4 ||= perfect 4th || 85/64 || 491.2691 || +1.0386 || 4/3 || || 17**·** || 523.0769 || 5 ||= ^4 ||= up 4th || 23/17 || 523.3189 || -0.242 || || || 18 || 553.8462 || 5‡ (4#) ||= ^^4 ||= double-up 4th || 11/8 || 551.3179 || +2.5283 || 11/8 || || 19 || 584.6154 || 6b ||= vvA4, ^d5 ||= double-down aug 4th, updim 5th || 7/5 || 582.5122 || +2.1032 || 7/5 || || 20 || 615.3846 || 5# ||= vA4, ^^d5 ||= downaug 4th, double-up dim 5th || 10/7 || 617.4878 || -2.1032 || 10/7 || || 21 || 646.1538 || 6v ||= vv5 ||= double-down 5th || 16/11 || 648.6821 || -2.5283 || 16/11 || || 22**·** || 676.9231 || 6 ||= v5 ||= down 5th || 34/23 || 676.6811 || +0.242 || || || 23 || 707.6923 || 6‡ ||= P5 ||= perfect 5th || 128/85 || 708.7309 || -1.0386 || 3/2 || || 24 || 738.4615 || 7b ||= ^5 ||= up 5th || 23/15 || 740.0056 || -1.5441 || || || 25 || 769.2308 || 6# ||= m6 ||= minor 6th || 64/41 || 770.9376 || -1.7068 || 14/9, 11/7 || || 26 || 800 || 7v ||= ^m6 ||= upminor 6th || 27/17 || 800.9096 || -0.9096 || 8/5 || || 27**·** || 830.7692 || 7 ||= v~6 ||= downmid 6th || 21/13 || 830.2532 || +0.516 || || || 28 || 861.5385 || 7‡ ||= ^~6 ||= upmid 6th || 28/17 || 863.8705 || -2.332 || 18/11 || || 29 || 892.3077 || 8b ||= vM6 ||= downmajor 6th || 72/43 || 892.3923 || -0.0846 || 5/3 || || 30 || 923.0769 || 7# ||= M6 ||= major 6th || 46/27 || 922.4093 || +0.6676 || 12/7 || || 31 || 953.8462 || 8v ||= ^M6, vm7 ||= upmajor 6th, downminor 7th || 26/15 || 952.2589 || +1.5873 || || || 32**·** || 984.6154 || 8 ||= m7 ||= minor 7th || 30/17 || 983.3133 || +1.3021 || 7/4, 16/9 || || 33 || 1015.3846 || 8‡ ||= ^m7 ||= upminor 7th || 9/5 || 1017.5963 || -2.2117 || 9/5 || || 34 || 1046.1538 || 9b ||= v~7 ||= downmid 7th || 64/35 || 1044.8604 || +1.2934 || 11/6, 20/11 || || 35 || 1076.9231 || 8# ||= ^~7 ||= upmid 7th || 41/22 || 1077.7445 || -0.8214 || || || 36 || 1107.6923 || 9v (1b) ||= vM7 ||= downmajor 7th || 74/39 || 1108.8614 || -1.1691 || || || 37 || 1138.4615 || 9 ||= M7 ||= major 7th || 56/29 || 1139.2487 || -0.7872 || || || 38 || 1169.2308 || 9‡ (1v) ||= v8 ||= down-8ve || 112/57 || 1169.3579 || -0.1271 || || || 39**··**(or 0) || 1200 || 1 ||= P8 ||= perfect 8ve || 2/1 || 1200 || None || || Chords can be named using ups and downs as C upminor, D downmajor seven, etc. See [[xenharmonic/Ups and Downs Notation#Chord%20names%20in%20other%20EDOs|Ups and Downs Notation - Chord names in other EDOs]]. ==__Instruments (prototypes):__== [[image:TECLADO 39-EDD.PNG width="800" height="467"]] //An illustrative image of a 39-ED2 keyboard// [[image:xenharmonic/Custom_700mm_5-str_Tricesanonaphonic_Guitar.png width="826" height="203" caption="39-EDD fretboard visualization"]] ==**__39 tone equal [[xenharmonic/modes|modes]]__:**== 14 14 11 - [[xenharmonic/MOSScales|MOS]] of type [[xenharmonic/2L 1s|2L 1s]] 11 11 11 6 - [[xenharmonic/MOSScales|MOS]] of type [[xenharmonic/3L 1s|3L 1s]] 10 10 10 9 - [[xenharmonic/MOSScales|MOS]] of type [[xenharmonic/3L 1s|3L 1s]] 11 3 11 11 3 - [[xenharmonic/MOSScales|MOS]] of type [[3L 2s|3L 2s (Father pentatonic)]] 5 12 5 5 12 - [[xenharmonic/MOSScales|MOS]] of type 2L 3s (Mavila pentatonic) 7 7 9 7 9 - [[xenharmonic/MOSScales|MOS]] of type 2L 3s (Superpythagorean pentatonic) 8 8 8 8 7 - [[xenharmonic/MOSScales|MOS]] of type [[4L 1s|4L 1s (Bug pentatonic)]] 10 3 10 3 10 3 - [[xenharmonic/MOSScales|MOS]] of type [[3L 3s|3L 3s (Augmented hexatonic)]] 9 4 9 4 9 4 - [[xenharmonic/MOSScales|MOS]] of type [[3L 3s|3L 3s (Augmented hexatonic)]] 8 5 8 5 8 5 - [[xenharmonic/MOSScales|MOS]] of type [[3L 3s|3L 3s (Augmented hexatonic)]] 7 7 7 7 7 4 - [[xenharmonic/MOSScales|MOS]] of type [[xenharmonic/5L 1s|5L 1s (Grumpy hexatonic)]] 5 5 7 5 5 5 7 - [[xenharmonic/MOSScales|MOS]] of type [[2L 5s|2L 5s (heptatonic Mavila Anti-Diatonic)]] 7 7 7 2 7 7 2 - [[xenharmonic/MOSScales|MOS]] of type 5L 2s (heptatonic Superpythagorean diatonic) 5 5 5 5 5 5 5 4 - [[xenharmonic/MOSScales|MOS]] of type [[xenharmonic/7L 1s|7L 1s (Grumpy octatonic)]] **5 5 5 2 5 5 5 5 2** - [[xenharmonic/MOSScales|MOS]] of type [[7L 2s|7L 2s (nonatonic Mavila Superdiatonic)]] 5 5 3 5 5 3 5 5 3 - [[xenharmonic/MOSScales|MOS]] of type [[6L 3s|6L 3s (unfair Augmented nonatonic)]] 5 4 4 5 4 4 5 4 4 - [[xenharmonic/MOSScales|MOS]] of type [[3L 6s|3L 6s (fair Augmented nonatonic)]] 4 4 4 4 4 4 4 4 4 3 - [[xenharmonic/MOSScales|MOS]] of type [[xenharmonic/9L 1s|9L 1s (Grumpy decatonic)]] **3 3 5 3 3 3 5 3 3 3 5** - [[xenharmonic/MOSScales|MOS]] of type [[3L 8s|3L 8s (Anti-Sensi hendecatonic)]] 2 5 2 2 5 2 5 2 5 2 2 5 - [[xenharmonic/MOSScales|MOS]] of type 5L 7s **3 3 3 4 3 3 3 4 3 3 3 4 -** [[xenharmonic/MOSScales|MOS]] of type 3L 9s **3 3 3 2 3 3 3 3 2 3 3 3 3 2** - [[xenharmonic/MOSScales|MOS]] of type [[11L 3s|11L 3s (Ketradektriatoh tetradecatonic)]] 3 2 3 3 2 3 2 3 3 2 3 2 3 3 2 - [[xenharmonic/MOSScales|MOS]] of type [[xenharmonic/9L 6s|9L 6s]] 3 2 3 2 3 2 2 3 2 3 2 3 2 3 2 2 - [[xenharmonic/MOSScales|MOS]] of type [[xenharmonic/7L 9s|7L 9s]] **2 2 3 2 2 2 3 2 2 3 2 2 3 2 2 2 3** - [[xenharmonic/MOSScales|MOS]] of type [[xenharmonic/5L 12s|5L 12s]] 2 2 2 2 2 3 2 2 2 2 2 3 2 2 2 2 2 3 - [[xenharmonic/MOSScales|MOS]] of type [[xenharmonic/3L 15s|3L 15s]] **3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3** - <span style="cursor: pointer;">[[xenharmonic/MOSScales|MOS]]</span> of type [[xenharmonic/10L 9s|10L 9s]] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 - [[xenharmonic/MOSScales|MOS]] of type [[xenharmonic/19L 1s|19L 1s]] 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 1 2 2 2 2 1 - [[xenharmonic/MOSScales|MOS]] of type [[xenharmonic/17L 5s|17L 5s]] **2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 2 2 1** - [[xenharmonic/MOSScales|MOS]] of type [[xenharmonic/16L 7s|16L 7s]] 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 - [[xenharmonic/MOSScales|MOS]] of type [[xenharmonic/13L 13s|13L 13s]] **2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1** - [[xenharmonic/MOSScales|MOS]] of type [[xenharmonic/10L 19s|10L 19s]] 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 - [[xenharmonic/MOSScales|MOS]] of type [[xenharmonic/8L 23s|8L 23s]] ==**__39edo and world music:__**== 39edo is a good candidate for a "universal tuning" in that it offers reasonable approximations of many different world music traditions; it is one of the simplest edos that can make this claim. Because of this, composers wishing to combine multiple world music traditions (for example, gamelan with maqam singing) within one unified framework would find 39edo an interesting possibility. ===Western:=== 39edo offers not one, but several different ways to realize the traditional Western diatonic scale. One way is to simply take a chain of fifths (the diatonic MOS: **7 7 2 7 7 7 2**). Because 39edo is a superpyth rather than a meantone system, this means that the harmonic quality of its diatonic scale will differ somewhat, since "minor" and "major" triads now approximate 6:7:9 and 14:18:21 respectively, rather than 10:12:15 and 4:5:6 as in meantone diatonic systems. Diatonic compositions translated onto this scale thus acquire a wildly different harmonic character, albeit still very pleasing. Another option is to use a MODMOS, such as **7 6 3 7 6 7 3**; this scale enables us to continue using pental rather than septimal thirds, but it has a false (wolf) fifth. When translating diatonic compositions into this scale, the wolf fifth can be avoided by introducing accidental notes when necessary. There are other MODMOS's that combine both pental and septimal harmonies. As such, a single Western classical or pop composition can be translated into 39edo in //many// different ways, acquiring a distinctly different but still harmonious character each time. The MOS and the MODMOS's all have smaller-than-usual semitones, which makes them more effective for melody than their counterparts in 12edo or meantone systems. Because 39edo and 12edo both have an overall sharp character and share the same major third, they have a relatively similar sound. Thus, 39edo (unlike, say, 22edo or 19edo, which are both "acquired tastes") does not sound all that xenharmonic to people used to 12edo. Check out [[https://www.prismnet.com/~hmiller/midi/canon39.mid|Pachelbel's Canon in 39edo]] (using the **7 6 3 7 6 7 3** MODMOS), for example. ===**Indian:**=== A similar situation arises with Indian music since the sruti system, like the Western system, also has multiple possible mappings in 39edo. Many of these are modified versions of the 17L 5s MOS (where the generator is a perfect fifth). ===**[[Arabic, Turkish, Persian]]:**=== While middle-eastern music is commonly approximated using 24edo, 39edo offers a potentially better alternative. 17edo and 24edo both satisfy the "Level 1" requirements for maqam tuning sytems. 39edo is a Level 2 system because: * It has two types of "neutral" seconds (154 and 185 cents) * It has two minor seconds (92 and 123 cents), which when added together give a whole tone (215 cents) whereas neither 17edo nor 24edo satisfy these properties. 39edo will likely be more suited to some middle-eastern scales than others. Specifically, Turkish music (in which the Rast makam has a "major-like" wide neutral third and a wide "neutral" second approaching 10/9), will likely be especially well suited to 39edo. ===**Blues / Jazz / African-American:**=== The harmonic seventh ("barbershop seventh") tetrad is reasonably well approximated in 39edo, and some temperaments (augene in particular) give scales that are liberally supplied with them. John Coltrane [[https://en.wikipedia.org/wiki/Coltrane_changes|would have loved augene]]. Tritone substitution, which is a major part of jazz and blues harmony, is more complicated in 39edo because there are two types of tritones. Therefore the tritone substitution of one seventh chord will need to be a different type of seventh chord. However, this also opens new possibilities; if the substituted chord is of a more consonant type than the original, then the tritone substitution may function as a //resolution// rather than a suspension. Blue notes, rather than being considered inflections, can be notated as accidentals instead; for example, a "blue major third" can be identified as either of the two neutral thirds. There are two possible mappings for 7:4 which are about equal in closeness. The sharp mapping is the normal one because it works better with the 5:4 and 3:2, but using the flat one instead (as an accidental) allows for another type of blue note. ===Other:=== 39edo offers a good approximation of pelog / mavila using the flat fifth as a generator. It also offers //many// possible pentatonic scales, including the 2L+3S MOS (which is **9 7 7 9 7**). Slendro can be approximated using this scale or using something like the quasi-equal **8 8 8 8 7**. A more expressive pentatonic scale is the oneirotonic subset **9 6 9 9 6**. Many Asian and African musical styles can thus be accomodated.
Original HTML content:
<html><head><title>39edo</title></head><body><!-- ws:start:WikiTextHeadingRule:0:<h1> --><h1 id="toc0"><a name="x39 tone equal temperament"></a><!-- ws:end:WikiTextHeadingRule:0 --><span style="color: #9900ab; font-family: 'Times New Roman',Times,serif; font-size: 113%;">39 tone equal temperament</span></h1> <br /> <strong>39-EDO, 39-ED2</strong> or <strong>39-tET</strong> divides the Octave (Ditave 2/1) in 39 equal parts of 30.76923 Cents each one. If we take 22\39 as a fifth, can be used in Mavila Temperament, and from that point of view seems to have attracted the attention of the Armodue school, an Italian group that use the scheme of <a class="wiki_link" href="http://xenharmonic.wikispaces.com/7L%202s">Superdiatonic</a> LLLsLLLLs like a basical scale for notation and theory, suited in <a class="wiki_link" href="http://xenharmonic.wikispaces.com/16edo">16-ED2</a>, and allied systems: <a class="wiki_link" href="http://xenharmonic.wikispaces.com/25edo">25-ED2</a> [1/3-tone 3;2]; <a class="wiki_link" href="http://xenharmonic.wikispaces.com/41edo">41-ED2</a> [1/5-tone 5;3]; and <a class="wiki_link" href="http://xenharmonic.wikispaces.com/57edo">57</a> ED2 [1/7-tone 7;4]. <strong>Hornbostel Temperaments</strong> is included too with: <a class="wiki_link" href="http://xenharmonic.wikispaces.com/23edo">23-ED2</a> [1/3-tone 3;1]; 39-ED2 [1/5-tone 5;2] & <a class="wiki_link" href="http://xenharmonic.wikispaces.com/62edo">62-ED2</a> [1/8-tone 8;3]. <a class="wiki_link" href="/223edo">223-ED2</a>, the best accuracy for Hornbostel temperament fits very good with Armodue like 1/29-tone 29;10 version. Note that <a class="wiki_link" href="/101edo">101</a>, <a class="wiki_link" href="/131edo">131</a>, <a class="wiki_link" href="/177edo">177</a> & <a class="wiki_link" href="/200edo">200</a> ED2s are tempered systems that <a class="wiki_link_ext" href="http://www.h-pi.com/eop-ogolevets.html" rel="nofollow">Alexei Ogolevets</a> (Ukraine, 1891 - 1967) was proposing in his List of Temperaments, in which the Armodue system fits very well in all these.<br /> However, its 23\39 fifth, 5.737 Cents sharp, is in much better tune than the Mavila fifth which like all Mavila fifths is very, very flat, in this case, 25 Cents flat. Together with its best third which is the familiar 400 cents of 12 equal, we get a system which tempers out the diesis, 128/125, and the amity comma, 1600000/1594323. We have two choices for a map for 7, but the sharp one works better with the 3 and 5, which adds 64/63 and 126/125 to the list. Tempering out both 128/125 and 64/63 makes 39EDO, in some few ways, allied to 12-ET in supporting augene temperament, and is in fact, an excellent choice for an augene tuning, but one difference is that 39 has a fine 11, and adding it to consideration we find that 39-EDO tempers out 99/98 and 121/120 also. This better choice for 39et is <39 62 91 110 135|.<br /> A particular anecdote with this 39 divisions per 2/1 was made in the Teliochordon, in 1788 by Charles Clagget (Ireland, 1740? - 1820), a little extract <a class="wiki_link_ext" href="http://ml.oxfordjournals.org/content/76/2/291.extract.jpg" rel="nofollow">here</a>.<br /> <br /> As a superpyth system, 39edo is intermediate between 17edo and 22edo (39 being 17+22). While 17edo is superb for melody (as documented by George Secor), it doesn't approximate the 5th harmonic at all and only poorly approximates the 7th. 22edo is much better for 5-limit and 7-limit harmony but is less effective for melody because the "diatonic semitone" is quarter-tone-sized, which results in a very strange-sounding diatonic scale. 39edo offers a compromise, since it still supports good 5- and 7-limit harmonies (though less close than 22edo), while at the same time having a diatonic semitone of 61.5 cents (the ideal diatonic semitone for melody being somewhere in between 60 and 80 cents, by Secor's estimates).<br /> <br /> 39edo offers not one, but many, possible ways of extending tonality beyond the diatonic scale, even if it doesn't do as good of a job at approximating JI as some other systems do. Because it can also approximate mavila as well as "anti-mavila" (oneirotonic), the latter of which it inherits from <a class="wiki_link" href="/13edo">13edo</a>, this makes 39edo an extremely versatile temperament usable in a wide range of situations (both harmonic and inharmonic).<br /> <br /> <br /> <!-- ws:start:WikiTextHeadingRule:2:<h2> --><h2 id="toc1"><a name="x39 tone equal temperament-39-EDO Intervals"></a><!-- ws:end:WikiTextHeadingRule:2 --><u><strong>39-EDO Intervals</strong></u></h2> <table class="wiki_table"> <tr> <td><strong>ARMODUE NOMENCLATURE 5;2 RELATION</strong><br /> </td> </tr> <tr> <td><ul><li><strong>‡</strong> = Semisharp (1/5-tone up)</li><li><strong>b</strong> = Flat (3/5-tone down)</li><li><strong>#</strong> = Sharp (3/5-tone up)</li><li><strong>v</strong> = Semiflat (1/5-tone down)</li></ul></td> </tr> </table> <br /> <table class="wiki_table"> <tr> <th><strong>Degrees</strong><br /> </th> <th><strong>Cents size</strong><br /> </th> <th><strong>Armodue note</strong><br /> </th> <th colspan="2"><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Ups%20and%20Downs%20Notation">ups and</a><br /> <a class="wiki_link" href="http://xenharmonic.wikispaces.com/Ups%20and%20Downs%20Notation">downs</a><br /> <a class="wiki_link" href="http://xenharmonic.wikispaces.com/Ups%20and%20Downs%20Notation">notation</a><br /> </th> <th><strong><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Nearest%20just%20interval">Nearest Just I</a>nterval</strong><br /> </th> <th><strong>Cents value</strong><br /> </th> <th><strong>Error</strong><br /> </th> <th>11-limit Ratio Assuming<br /> <39 62 91 110 135| <a class="wiki_link" href="/Val">Val</a><br /> </th> </tr> <tr> <td>0<br /> </td> <td>0<br /> </td> <td>1<br /> </td> <td style="text-align: center;">P1<br /> </td> <td style="text-align: center;">perfect unison<br /> </td> <td>1/1<br /> </td> <td>0<br /> </td> <td>None<br /> </td> <td>1/1<br /> </td> </tr> <tr> <td>1<br /> </td> <td>30.7692<br /> </td> <td>1‡ (9#)<br /> </td> <td style="text-align: center;">^1<br /> </td> <td style="text-align: center;">up unison<br /> </td> <td>57/56<br /> </td> <td>30.6421<br /> </td> <td>+0.1271<br /> </td> <td><br /> </td> </tr> <tr> <td>2<br /> </td> <td>61.5385<br /> </td> <td>2b<br /> </td> <td style="text-align: center;">m2<br /> </td> <td style="text-align: center;">minor 2nd<br /> </td> <td>29/28<br /> </td> <td>60.7513<br /> </td> <td>+0.7872<br /> </td> <td><br /> </td> </tr> <tr> <td>3<br /> </td> <td>92.3077<br /> </td> <td>1#<br /> </td> <td style="text-align: center;">^m2<br /> </td> <td style="text-align: center;">upminor 2nd<br /> </td> <td>39/37<br /> </td> <td>91.1386<br /> </td> <td>+1.1691<br /> </td> <td><br /> </td> </tr> <tr> <td>4<br /> </td> <td>123.0769<br /> </td> <td>2v<br /> </td> <td style="text-align: center;">v~2<br /> </td> <td style="text-align: center;">downmid 2nd<br /> </td> <td>44/41<br /> </td> <td>122.2555<br /> </td> <td>+0.8214<br /> </td> <td><br /> </td> </tr> <tr> <td>5<br /> </td> <td>153.8462<br /> </td> <td>2<br /> </td> <td style="text-align: center;">^~2<br /> </td> <td style="text-align: center;">upmid 2nd<br /> </td> <td>35/32<br /> </td> <td>155.1396<br /> </td> <td>-1.2934<br /> </td> <td>12/11, 11/10<br /> </td> </tr> <tr> <td>6<br /> </td> <td>184.6154<br /> </td> <td>2‡<br /> </td> <td style="text-align: center;">vM2<br /> </td> <td style="text-align: center;">downmajor 2nd<br /> </td> <td>10/9<br /> </td> <td>182.4037<br /> </td> <td>+2.2117<br /> </td> <td>10/9<br /> </td> </tr> <tr> <td>7<strong>·</strong><br /> </td> <td>215.3846<br /> </td> <td>3b<br /> </td> <td style="text-align: center;">M2<br /> </td> <td style="text-align: center;">major 2nd<br /> </td> <td>17/15<br /> </td> <td>216.6867<br /> </td> <td>-1.3021<br /> </td> <td>8/7, 9/8<br /> </td> </tr> <tr> <td>8<br /> </td> <td>246.1538<br /> </td> <td>2#<br /> </td> <td style="text-align: center;">^M2,<br /> vm3<br /> </td> <td style="text-align: center;">upmajor 2nd,<br /> downminor 3rd<br /> </td> <td>15/13<br /> </td> <td>247.7411<br /> </td> <td>-1.5873<br /> </td> <td><br /> </td> </tr> <tr> <td>9<br /> </td> <td>276.9231<br /> </td> <td>3v<br /> </td> <td style="text-align: center;">m3<br /> </td> <td style="text-align: center;">minor 3rd<br /> </td> <td>27/23<br /> </td> <td>277.5907<br /> </td> <td>-0.6676<br /> </td> <td>7/6<br /> </td> </tr> <tr> <td>10<br /> </td> <td>307.6923<br /> </td> <td>3<br /> </td> <td style="text-align: center;">^m3<br /> </td> <td style="text-align: center;">upminor 3rd<br /> </td> <td>43/36<br /> </td> <td>307.6077<br /> </td> <td>+0.0846<br /> </td> <td>6/5<br /> </td> </tr> <tr> <td>11<br /> </td> <td>338.4615<br /> </td> <td>3‡<br /> </td> <td style="text-align: center;">v~3<br /> </td> <td style="text-align: center;">downmid 3rd<br /> </td> <td>17/14<br /> </td> <td>336.1295<br /> </td> <td>+2.332<br /> </td> <td>11/9<br /> </td> </tr> <tr> <td>12<strong>·</strong><br /> </td> <td>369.2308<br /> </td> <td>4b<br /> </td> <td style="text-align: center;">^~3<br /> </td> <td style="text-align: center;">upmid 3rd<br /> </td> <td>26/21<br /> </td> <td>369.7468<br /> </td> <td>-0.516<br /> </td> <td><br /> </td> </tr> <tr> <td>13<br /> </td> <td>400<br /> </td> <td>3#<br /> </td> <td style="text-align: center;">vM3<br /> </td> <td style="text-align: center;">downmajor 3rd<br /> </td> <td>34/27<br /> </td> <td>399.0904<br /> </td> <td>+0.9096<br /> </td> <td>5/4<br /> </td> </tr> <tr> <td>14<br /> </td> <td>430.7692<br /> </td> <td>4v (5b)<br /> </td> <td style="text-align: center;">M3<br /> </td> <td style="text-align: center;">major 3rd<br /> </td> <td>41/32<br /> </td> <td>429.0624<br /> </td> <td>+1.7068<br /> </td> <td>9/7, 14/11<br /> </td> </tr> <tr> <td>15<br /> </td> <td>461.5385<br /> </td> <td>4<br /> </td> <td style="text-align: center;">v4<br /> </td> <td style="text-align: center;">down 4th<br /> </td> <td>30/23<br /> </td> <td>459.9944<br /> </td> <td>+1.5441<br /> </td> <td><br /> </td> </tr> <tr> <td>16<br /> </td> <td>492.3077<br /> </td> <td>4‡ (5v)<br /> </td> <td style="text-align: center;">P4<br /> </td> <td style="text-align: center;">perfect 4th<br /> </td> <td>85/64<br /> </td> <td>491.2691<br /> </td> <td>+1.0386<br /> </td> <td>4/3<br /> </td> </tr> <tr> <td>17<strong>·</strong><br /> </td> <td>523.0769<br /> </td> <td>5<br /> </td> <td style="text-align: center;">^4<br /> </td> <td style="text-align: center;">up 4th<br /> </td> <td>23/17<br /> </td> <td>523.3189<br /> </td> <td>-0.242<br /> </td> <td><br /> </td> </tr> <tr> <td>18<br /> </td> <td>553.8462<br /> </td> <td>5‡ (4#)<br /> </td> <td style="text-align: center;">^^4<br /> </td> <td style="text-align: center;">double-up 4th<br /> </td> <td>11/8<br /> </td> <td>551.3179<br /> </td> <td>+2.5283<br /> </td> <td>11/8<br /> </td> </tr> <tr> <td>19<br /> </td> <td>584.6154<br /> </td> <td>6b<br /> </td> <td style="text-align: center;">vvA4,<br /> ^d5<br /> </td> <td style="text-align: center;">double-down aug 4th, updim 5th<br /> </td> <td>7/5<br /> </td> <td>582.5122<br /> </td> <td>+2.1032<br /> </td> <td>7/5<br /> </td> </tr> <tr> <td>20<br /> </td> <td>615.3846<br /> </td> <td>5#<br /> </td> <td style="text-align: center;">vA4,<br /> ^^d5<br /> </td> <td style="text-align: center;">downaug 4th, double-up dim 5th<br /> </td> <td>10/7<br /> </td> <td>617.4878<br /> </td> <td>-2.1032<br /> </td> <td>10/7<br /> </td> </tr> <tr> <td>21<br /> </td> <td>646.1538<br /> </td> <td>6v<br /> </td> <td style="text-align: center;">vv5<br /> </td> <td style="text-align: center;">double-down 5th<br /> </td> <td>16/11<br /> </td> <td>648.6821<br /> </td> <td>-2.5283<br /> </td> <td>16/11<br /> </td> </tr> <tr> <td>22<strong>·</strong><br /> </td> <td>676.9231<br /> </td> <td>6<br /> </td> <td style="text-align: center;">v5<br /> </td> <td style="text-align: center;">down 5th<br /> </td> <td>34/23<br /> </td> <td>676.6811<br /> </td> <td>+0.242<br /> </td> <td><br /> </td> </tr> <tr> <td>23<br /> </td> <td>707.6923<br /> </td> <td>6‡<br /> </td> <td style="text-align: center;">P5<br /> </td> <td style="text-align: center;">perfect 5th<br /> </td> <td>128/85<br /> </td> <td>708.7309<br /> </td> <td>-1.0386<br /> </td> <td>3/2<br /> </td> </tr> <tr> <td>24<br /> </td> <td>738.4615<br /> </td> <td>7b<br /> </td> <td style="text-align: center;">^5<br /> </td> <td style="text-align: center;">up 5th<br /> </td> <td>23/15<br /> </td> <td>740.0056<br /> </td> <td>-1.5441<br /> </td> <td><br /> </td> </tr> <tr> <td>25<br /> </td> <td>769.2308<br /> </td> <td>6#<br /> </td> <td style="text-align: center;">m6<br /> </td> <td style="text-align: center;">minor 6th<br /> </td> <td>64/41<br /> </td> <td>770.9376<br /> </td> <td>-1.7068<br /> </td> <td>14/9, 11/7<br /> </td> </tr> <tr> <td>26<br /> </td> <td>800<br /> </td> <td>7v<br /> </td> <td style="text-align: center;">^m6<br /> </td> <td style="text-align: center;">upminor 6th<br /> </td> <td>27/17<br /> </td> <td>800.9096<br /> </td> <td>-0.9096<br /> </td> <td>8/5<br /> </td> </tr> <tr> <td>27<strong>·</strong><br /> </td> <td>830.7692<br /> </td> <td>7<br /> </td> <td style="text-align: center;">v~6<br /> </td> <td style="text-align: center;">downmid 6th<br /> </td> <td>21/13<br /> </td> <td>830.2532<br /> </td> <td>+0.516<br /> </td> <td><br /> </td> </tr> <tr> <td>28<br /> </td> <td>861.5385<br /> </td> <td>7‡<br /> </td> <td style="text-align: center;">^~6<br /> </td> <td style="text-align: center;">upmid 6th<br /> </td> <td>28/17<br /> </td> <td>863.8705<br /> </td> <td>-2.332<br /> </td> <td>18/11<br /> </td> </tr> <tr> <td>29<br /> </td> <td>892.3077<br /> </td> <td>8b<br /> </td> <td style="text-align: center;">vM6<br /> </td> <td style="text-align: center;">downmajor 6th<br /> </td> <td>72/43<br /> </td> <td>892.3923<br /> </td> <td>-0.0846<br /> </td> <td>5/3<br /> </td> </tr> <tr> <td>30<br /> </td> <td>923.0769<br /> </td> <td>7#<br /> </td> <td style="text-align: center;">M6<br /> </td> <td style="text-align: center;">major 6th<br /> </td> <td>46/27<br /> </td> <td>922.4093<br /> </td> <td>+0.6676<br /> </td> <td>12/7<br /> </td> </tr> <tr> <td>31<br /> </td> <td>953.8462<br /> </td> <td>8v<br /> </td> <td style="text-align: center;">^M6,<br /> vm7<br /> </td> <td style="text-align: center;">upmajor 6th,<br /> downminor 7th<br /> </td> <td>26/15<br /> </td> <td>952.2589<br /> </td> <td>+1.5873<br /> </td> <td><br /> </td> </tr> <tr> <td>32<strong>·</strong><br /> </td> <td>984.6154<br /> </td> <td>8<br /> </td> <td style="text-align: center;">m7<br /> </td> <td style="text-align: center;">minor 7th<br /> </td> <td>30/17<br /> </td> <td>983.3133<br /> </td> <td>+1.3021<br /> </td> <td>7/4, 16/9<br /> </td> </tr> <tr> <td>33<br /> </td> <td>1015.3846<br /> </td> <td>8‡<br /> </td> <td style="text-align: center;">^m7<br /> </td> <td style="text-align: center;">upminor 7th<br /> </td> <td>9/5<br /> </td> <td>1017.5963<br /> </td> <td>-2.2117<br /> </td> <td>9/5<br /> </td> </tr> <tr> <td>34<br /> </td> <td>1046.1538<br /> </td> <td>9b<br /> </td> <td style="text-align: center;">v~7<br /> </td> <td style="text-align: center;">downmid 7th<br /> </td> <td>64/35<br /> </td> <td>1044.8604<br /> </td> <td>+1.2934<br /> </td> <td>11/6, 20/11<br /> </td> </tr> <tr> <td>35<br /> </td> <td>1076.9231<br /> </td> <td>8#<br /> </td> <td style="text-align: center;">^~7<br /> </td> <td style="text-align: center;">upmid 7th<br /> </td> <td>41/22<br /> </td> <td>1077.7445<br /> </td> <td>-0.8214<br /> </td> <td><br /> </td> </tr> <tr> <td>36<br /> </td> <td>1107.6923<br /> </td> <td>9v (1b)<br /> </td> <td style="text-align: center;">vM7<br /> </td> <td style="text-align: center;">downmajor 7th<br /> </td> <td>74/39<br /> </td> <td>1108.8614<br /> </td> <td>-1.1691<br /> </td> <td><br /> </td> </tr> <tr> <td>37<br /> </td> <td>1138.4615<br /> </td> <td>9<br /> </td> <td style="text-align: center;">M7<br /> </td> <td style="text-align: center;">major 7th<br /> </td> <td>56/29<br /> </td> <td>1139.2487<br /> </td> <td>-0.7872<br /> </td> <td><br /> </td> </tr> <tr> <td>38<br /> </td> <td>1169.2308<br /> </td> <td>9‡ (1v)<br /> </td> <td style="text-align: center;">v8<br /> </td> <td style="text-align: center;">down-8ve<br /> </td> <td>112/57<br /> </td> <td>1169.3579<br /> </td> <td>-0.1271<br /> </td> <td><br /> </td> </tr> <tr> <td>39<strong>··</strong>(or 0)<br /> </td> <td>1200<br /> </td> <td>1<br /> </td> <td style="text-align: center;">P8<br /> </td> <td style="text-align: center;">perfect 8ve<br /> </td> <td>2/1<br /> </td> <td>1200<br /> </td> <td>None<br /> </td> <td><br /> </td> </tr> </table> Chords can be named using ups and downs as C upminor, D downmajor seven, etc. See <a class="wiki_link" href="http://xenharmonic.wikispaces.com/Ups%20and%20Downs%20Notation#Chord%20names%20in%20other%20EDOs">Ups and Downs Notation - Chord names in other EDOs</a>.<br /> <br /> <!-- ws:start:WikiTextHeadingRule:4:<h2> --><h2 id="toc2"><a name="x39 tone equal temperament-Instruments (prototypes):"></a><!-- ws:end:WikiTextHeadingRule:4 --><u>Instruments (prototypes):</u></h2> <br /> <!-- ws:start:WikiTextLocalImageRule:866:<img src="/file/view/TECLADO%2039-EDD.PNG/390052498/800x467/TECLADO%2039-EDD.PNG" alt="" title="" style="height: 467px; width: 800px;" /> --><img src="/file/view/TECLADO%2039-EDD.PNG/390052498/800x467/TECLADO%2039-EDD.PNG" alt="TECLADO 39-EDD.PNG" title="TECLADO 39-EDD.PNG" style="height: 467px; width: 800px;" /><!-- ws:end:WikiTextLocalImageRule:866 --><br /> <em>An illustrative image of a 39-ED2 keyboard</em><br /> <!-- ws:start:WikiTextLocalImageRule:867:<img src="http://xenharmonic.wikispaces.com/file/view/Custom_700mm_5-str_Tricesanonaphonic_Guitar.png/258445130/826x203/Custom_700mm_5-str_Tricesanonaphonic_Guitar.png" alt="39-EDD fretboard visualization" title="39-EDD fretboard visualization" style="height: 203px; width: 826px;" /> --><table class="captionBox"><tr><td class="captionedImage"><img src="http://xenharmonic.wikispaces.com/file/view/Custom_700mm_5-str_Tricesanonaphonic_Guitar.png/258445130/826x203/Custom_700mm_5-str_Tricesanonaphonic_Guitar.png" alt="Custom_700mm_5-str_Tricesanonaphonic_Guitar.png" title="Custom_700mm_5-str_Tricesanonaphonic_Guitar.png" style="height: 203px; width: 826px;" /></td></tr><tr><td class="imageCaption">39-EDD fretboard visualization</td></tr></table><!-- ws:end:WikiTextLocalImageRule:867 --><br /> <br /> <br /> <!-- ws:start:WikiTextHeadingRule:6:<h2> --><h2 id="toc3"><a name="x39 tone equal temperament-39 tone equal modes:"></a><!-- ws:end:WikiTextHeadingRule:6 --><strong><u>39 tone equal <a class="wiki_link" href="http://xenharmonic.wikispaces.com/modes">modes</a></u>:</strong></h2> <br /> 14 14 11 - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="http://xenharmonic.wikispaces.com/2L%201s">2L 1s</a><br /> 11 11 11 6 - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="http://xenharmonic.wikispaces.com/3L%201s">3L 1s</a><br /> 10 10 10 9 - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="http://xenharmonic.wikispaces.com/3L%201s">3L 1s</a><br /> 11 3 11 11 3 - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="/3L%202s">3L 2s (Father pentatonic)</a><br /> 5 12 5 5 12 - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type 2L 3s (Mavila pentatonic)<br /> 7 7 9 7 9 - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type 2L 3s (Superpythagorean pentatonic)<br /> 8 8 8 8 7 - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="/4L%201s">4L 1s (Bug pentatonic)</a><br /> 10 3 10 3 10 3 - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="/3L%203s">3L 3s (Augmented hexatonic)</a><br /> 9 4 9 4 9 4 - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="/3L%203s">3L 3s (Augmented hexatonic)</a><br /> 8 5 8 5 8 5 - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="/3L%203s">3L 3s (Augmented hexatonic)</a><br /> 7 7 7 7 7 4 - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="http://xenharmonic.wikispaces.com/5L%201s">5L 1s (Grumpy hexatonic)</a><br /> 5 5 7 5 5 5 7 - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="/2L%205s">2L 5s (heptatonic Mavila Anti-Diatonic)</a><br /> 7 7 7 2 7 7 2 - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type 5L 2s (heptatonic Superpythagorean diatonic)<br /> 5 5 5 5 5 5 5 4 - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="http://xenharmonic.wikispaces.com/7L%201s">7L 1s (Grumpy octatonic)</a><br /> <strong>5 5 5 2 5 5 5 5 2</strong> - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="/7L%202s">7L 2s (nonatonic Mavila Superdiatonic)</a><br /> 5 5 3 5 5 3 5 5 3 - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="/6L%203s">6L 3s (unfair Augmented nonatonic)</a><br /> 5 4 4 5 4 4 5 4 4 - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="/3L%206s">3L 6s (fair Augmented nonatonic)</a><br /> 4 4 4 4 4 4 4 4 4 3 - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="http://xenharmonic.wikispaces.com/9L%201s">9L 1s (Grumpy decatonic)</a><br /> <strong>3 3 5 3 3 3 5 3 3 3 5</strong> - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="/3L%208s">3L 8s (Anti-Sensi hendecatonic)</a><br /> 2 5 2 2 5 2 5 2 5 2 2 5 - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type 5L 7s<br /> <strong>3 3 3 4 3 3 3 4 3 3 3 4 -</strong> <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type 3L 9s<br /> <strong>3 3 3 2 3 3 3 3 2 3 3 3 3 2</strong> - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="/11L%203s">11L 3s (Ketradektriatoh tetradecatonic)</a><br /> 3 2 3 3 2 3 2 3 3 2 3 2 3 3 2 - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="http://xenharmonic.wikispaces.com/9L%206s">9L 6s</a><br /> 3 2 3 2 3 2 2 3 2 3 2 3 2 3 2 2 - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="http://xenharmonic.wikispaces.com/7L%209s">7L 9s</a><br /> <strong>2 2 3 2 2 2 3 2 2 3 2 2 3 2 2 2 3</strong> - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="http://xenharmonic.wikispaces.com/5L%2012s">5L 12s</a><br /> 2 2 2 2 2 3 2 2 2 2 2 3 2 2 2 2 2 3 - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="http://xenharmonic.wikispaces.com/3L%2015s">3L 15s</a><br /> <strong>3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3</strong> - <span style="cursor: pointer;"><a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a></span> of type <a class="wiki_link" href="http://xenharmonic.wikispaces.com/10L%209s">10L 9s</a><br /> 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="http://xenharmonic.wikispaces.com/19L%201s">19L 1s</a><br /> 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 1 2 2 2 2 1 - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="http://xenharmonic.wikispaces.com/17L%205s">17L 5s</a><br /> <strong>2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 2 2 1</strong> - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="http://xenharmonic.wikispaces.com/16L%207s">16L 7s</a><br /> 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="http://xenharmonic.wikispaces.com/13L%2013s">13L 13s</a><br /> <strong>2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1</strong> - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="http://xenharmonic.wikispaces.com/10L%2019s">10L 19s</a><br /> 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 - <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales">MOS</a> of type <a class="wiki_link" href="http://xenharmonic.wikispaces.com/8L%2023s">8L 23s</a><br /> <br /> <!-- ws:start:WikiTextHeadingRule:8:<h2> --><h2 id="toc4"><a name="x39 tone equal temperament-39edo and world music:"></a><!-- ws:end:WikiTextHeadingRule:8 --><strong><u>39edo and world music:</u></strong></h2> <br /> 39edo is a good candidate for a "universal tuning" in that it offers reasonable approximations of many different world music traditions; it is one of the simplest edos that can make this claim. Because of this, composers wishing to combine multiple world music traditions (for example, gamelan with maqam singing) within one unified framework would find 39edo an interesting possibility.<br /> <br /> <!-- ws:start:WikiTextHeadingRule:10:<h3> --><h3 id="toc5"><a name="x39 tone equal temperament-39edo and world music:-Western:"></a><!-- ws:end:WikiTextHeadingRule:10 -->Western:</h3> <br /> 39edo offers not one, but several different ways to realize the traditional Western diatonic scale. One way is to simply take a chain of fifths (the diatonic MOS: <strong>7 7 2 7 7 7 2</strong>). Because 39edo is a superpyth rather than a meantone system, this means that the harmonic quality of its diatonic scale will differ somewhat, since "minor" and "major" triads now approximate 6:7:9 and 14:18:21 respectively, rather than 10:12:15 and 4:5:6 as in meantone diatonic systems. Diatonic compositions translated onto this scale thus acquire a wildly different harmonic character, albeit still very pleasing.<br /> <br /> Another option is to use a MODMOS, such as <strong>7 6 3 7 6 7 3</strong>; this scale enables us to continue using pental rather than septimal thirds, but it has a false (wolf) fifth. When translating diatonic compositions into this scale, the wolf fifth can be avoided by introducing accidental notes when necessary. There are other MODMOS's that combine both pental and septimal harmonies. As such, a single Western classical or pop composition can be translated into 39edo in <em>many</em> different ways, acquiring a distinctly different but still harmonious character each time.<br /> <br /> The MOS and the MODMOS's all have smaller-than-usual semitones, which makes them more effective for melody than their counterparts in 12edo or meantone systems.<br /> <br /> Because 39edo and 12edo both have an overall sharp character and share the same major third, they have a relatively similar sound. Thus, 39edo (unlike, say, 22edo or 19edo, which are both "acquired tastes") does not sound all that xenharmonic to people used to 12edo. Check out <a class="wiki_link_ext" href="https://www.prismnet.com/~hmiller/midi/canon39.mid" rel="nofollow">Pachelbel's Canon in 39edo</a> (using the <strong>7 6 3 7 6 7 3</strong> MODMOS), for example.<br /> <br /> <!-- ws:start:WikiTextHeadingRule:12:<h3> --><h3 id="toc6"><a name="x39 tone equal temperament-39edo and world music:-Indian:"></a><!-- ws:end:WikiTextHeadingRule:12 --><strong>Indian:</strong></h3> <br /> A similar situation arises with Indian music since the sruti system, like the Western system, also has multiple possible mappings in 39edo. Many of these are modified versions of the 17L 5s MOS (where the generator is a perfect fifth).<br /> <br /> <!-- ws:start:WikiTextHeadingRule:14:<h3> --><h3 id="toc7"><a name="x39 tone equal temperament-39edo and world music:-Arabic, Turkish, Persian:"></a><!-- ws:end:WikiTextHeadingRule:14 --><strong><a class="wiki_link" href="/Arabic%2C%20Turkish%2C%20Persian">Arabic, Turkish, Persian</a>:</strong></h3> <br /> While middle-eastern music is commonly approximated using 24edo, 39edo offers a potentially better alternative. 17edo and 24edo both satisfy the "Level 1" requirements for maqam tuning sytems. 39edo is a Level 2 system because:<br /> <br /> <ul><li>It has two types of "neutral" seconds (154 and 185 cents)</li><li>It has two minor seconds (92 and 123 cents), which when added together give a whole tone (215 cents)</li></ul><br /> whereas neither 17edo nor 24edo satisfy these properties.<br /> <br /> 39edo will likely be more suited to some middle-eastern scales than others. Specifically, Turkish music (in which the Rast makam has a "major-like" wide neutral third and a wide "neutral" second approaching 10/9), will likely be especially well suited to 39edo.<br /> <br /> <!-- ws:start:WikiTextHeadingRule:16:<h3> --><h3 id="toc8"><a name="x39 tone equal temperament-39edo and world music:-Blues / Jazz / African-American:"></a><!-- ws:end:WikiTextHeadingRule:16 --><strong>Blues / Jazz / African-American:</strong></h3> <br /> The harmonic seventh ("barbershop seventh") tetrad is reasonably well approximated in 39edo, and some temperaments (augene in particular) give scales that are liberally supplied with them. John Coltrane <a class="wiki_link_ext" href="https://en.wikipedia.org/wiki/Coltrane_changes" rel="nofollow">would have loved augene</a>.<br /> <br /> Tritone substitution, which is a major part of jazz and blues harmony, is more complicated in 39edo because there are two types of tritones. Therefore the tritone substitution of one seventh chord will need to be a different type of seventh chord. However, this also opens new possibilities; if the substituted chord is of a more consonant type than the original, then the tritone substitution may function as a <em>resolution</em> rather than a suspension.<br /> <br /> Blue notes, rather than being considered inflections, can be notated as accidentals instead; for example, a "blue major third" can be identified as either of the two neutral thirds. There are two possible mappings for 7:4 which are about equal in closeness. The sharp mapping is the normal one because it works better with the 5:4 and 3:2, but using the flat one instead (as an accidental) allows for another type of blue note.<br /> <br /> <!-- ws:start:WikiTextHeadingRule:18:<h3> --><h3 id="toc9"><a name="x39 tone equal temperament-39edo and world music:-Other:"></a><!-- ws:end:WikiTextHeadingRule:18 -->Other:</h3> <br /> 39edo offers a good approximation of pelog / mavila using the flat fifth as a generator.<br /> <br /> It also offers <em>many</em> possible pentatonic scales, including the 2L+3S MOS (which is <strong>9 7 7 9 7</strong>). Slendro can be approximated using this scale or using something like the quasi-equal <strong>8 8 8 8 7</strong>. A more expressive pentatonic scale is the oneirotonic subset <strong>9 6 9 9 6</strong>. Many Asian and African musical styles can thus be accomodated.</body></html>