35edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>keenanpepper
**Imported revision 330383908 - Original comment: **
Wikispaces>phylingual
**Imported revision 330625972 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:keenanpepper|keenanpepper]] and made on <tt>2012-05-05 03:57:17 UTC</tt>.<br>
: This revision was by author [[User:phylingual|phylingual]] and made on <tt>2012-05-06 07:32:49 UTC</tt>.<br>
: The original revision id was <tt>330383908</tt>.<br>
: The original revision id was <tt>330625972</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 70: Line 70:
|| 1 || 16\35 ||  ||  ||
|| 1 || 16\35 ||  ||  ||
|| 1 || 17\35 ||  ||  ||
|| 1 || 17\35 ||  ||  ||
|| 5 || 1\35 ||  || [[Blackwood]] (bad) ||
|| 5 || 1\35 ||  || [[Blackwood]] (very unfair, with 7/6 and 9/7) ||
|| 5 || 2\35 ||  || [[Blackwood]] (unfair) ||
|| 5 || 2\35 ||  || [[Blackwood]] (unfair, favoring 6/5) ||
|| 5 || 3\35 ||  || [[Blackwood]] (fair) ||
|| 5 || 3\35 ||  || [[Blackwood]] (fair, favoring 5/4) ||
|| 7 || 1\35 || [[xenharmonic/Apotome family|Whitewood]]/[[xenharmonic/Apotome family#Redwood|Redwood]] ||  ||
|| 7 || 1\35 || [[xenharmonic/Apotome family|Whitewood]]/[[xenharmonic/Apotome family#Redwood|Redwood]] ||  ||
|| 7 || 2\35 || [[xenharmonic/Greenwoodmic temperaments#Greenwood|Greenwood]] ||  ||
|| 7 || 2\35 || [[xenharmonic/Greenwoodmic temperaments#Greenwood|Greenwood]] ||  ||
Line 683: Line 683:
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="/Blackwood"&gt;Blackwood&lt;/a&gt; (bad)&lt;br /&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="/Blackwood"&gt;Blackwood&lt;/a&gt; (very unfair, with 7/6 and 9/7)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 693: Line 693:
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="/Blackwood"&gt;Blackwood&lt;/a&gt; (unfair)&lt;br /&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="/Blackwood"&gt;Blackwood&lt;/a&gt; (unfair, favoring 6/5)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 703: Line 703:
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="/Blackwood"&gt;Blackwood&lt;/a&gt; (fair)&lt;br /&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="/Blackwood"&gt;Blackwood&lt;/a&gt; (fair, favoring 5/4)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;

Revision as of 07:32, 6 May 2012

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author phylingual and made on 2012-05-06 07:32:49 UTC.
The original revision id was 330625972.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

35-tET or 35-[[xenharmonic/edo|EDO]] refers to a tuning system which divides the octave into 35 steps of approximately [[xenharmonic/cent|34.29¢]] each.

As 35 is 5 times 7, 35edo allows for mixing the two smallest xenharmonic [[xenharmonic/macrotonal edos|macrotonal edos]]: [[xenharmonic/5edo|5edo]] and [[xenharmonic/7edo|7edo]]. A single degree of 35edo represents the difference between 7edo's narrow fifth of 685.71¢ and 5edo's wide fifth of 720¢. 35edo can also represent the 2.3.5.7.11.17 [[xenharmonic/Just intonation subgroups|subgroup]] and 2.9.5.7.11.17 subgroup, because of the accuracy of 9 and the flatness of all other subgroup generators. Therefore among whitewood tunings it is very versatile, you can switch between these different subgroups if you don't mind having to use two different 3/2s to reach the inconsistent 9 (a characteristic of whitewood tunings), and if you ignore [[xenharmonic/22edo|22edo]]'s
more in-tune versions of 35edo MOS's and consistent representation of both subgroups. 35edo has the optimal patent val for [[xenharmonic/Greenwoodmic temperaments|greenwood]] and [[xenharmonic/Greenwoodmic temperaments#Secund|secund]] temperaments.

A good beggining for start to play 35-EDO is with the Sub-diatonic scale, that is a [[xenharmonic/MOS|MOS]] of 3L2s: 9 4 9 9 4.

=Intervals= 


|| Degrees of 35-EDO || Cents value || Ratios in 2.5.7.11.17 subgroup || Ratios with flat 3 || Ratios with 9 ||
|| 0 || 0 || 1/1 ||   ||   ||
|| 1 || 34.29 || 50/49, 121/119 || 36/35 || 81/80 ||
|| 2 || 68.57 || 128/125 || 25/24 ||   ||
|| 3 || 102.86 || 17/16 ||   || 18/17 ||
|| 4 || 137.14 ||   || 12/11 ||   ||
|| 5 || 171.43 || 11/10 ||   || 10/9 ||
|| 6 || 205.71 ||   ||   || 9/8 ||
|| 7 || 240 || 8/7 ||   ||   ||
|| 8 || 274.29 || 20/17 || 7/6 ||   ||
|| 9 || 308.57 ||   || 6/5 ||   ||
|| 10 || 342.86 || 17/14 ||   || 11/9 ||
|| 11 || 377.14 || 5/4 ||   ||   ||
|| 12 || 411.43 || 14/11 ||   || 14/11 ||
|| 13 || 445.71 || 22/17 ||   || 9/7 ||
|| 14 || 480 ||   ||   ||   ||
|| 15 || 514.29 ||   || 4/3 ||   ||
|| 16 || 548.57 || 11/8 ||   ||   ||
|| 17 || 582.86 || 7/5 || 24/17 ||   ||
|| 18 || 617.14 || 10/7 || 17/12 ||   ||
|| 19 || 651.43 || 16/11 ||   ||   ||
|| 20 || 685.71 ||   || 3/2 ||   ||
|| 21 || 720 ||   ||   ||   ||
|| 22 || 754.29 || 17/11 || 25/24 || 14/9 ||
|| 23 || 788.57 || 11/7 ||   ||   ||
|| 24 || 822.86 || 8/5 ||   ||   ||
|| 25 || 857.15 ||   ||   || 18/11 ||
|| 26 || 891.43 ||   || 5/3 ||   ||
|| 27 || 925.71 || 17/10 || 12/7 ||   ||
|| 28 || 960 || 7/4 ||   ||   ||
|| 29 || 994.29 ||   ||   || 16/9 ||
|| 30 || 1028.57 || 20/11 ||   || 9/5 ||
|| 31 || 1062.86 ||   || 11/6 ||   ||
|| 32 || 1097.14 || 32/17 ||   || 17/9 ||
|| 33 || 1131.43 ||   ||   ||   ||
|| 34 || 1165.71 ||   ||   ||   ||
=Rank two temperaments= 

||~ Periods
per octave ||~ Generator ||~ Temperaments with
flat 3/2 (patent val) ||~ <span style="display: block; text-align: center;">Temperaments with</span>
<span style="display: block; text-align: center;">sharp 3/2 (35b val)</span> ||
|| 1 || 1\35 ||   ||   ||
|| 1 || 2\35 ||   ||   ||
|| 1 || 3\35 ||   || [[Ripple]] ||
|| 1 || 4\35 || [[xenharmonic/Greenwoodmic temperaments#Secund|Secund]] ||   ||
|| 1 || 6\35 |||| Messed-up [[Chromatic pairs#Baldy|Baldy]] ||
|| 1 || 8\35 ||   || Messed-up [[Orwell]] ||
|| 1 || 9\35 || [[xenharmonic/Myna|Myna]] ||   ||
|| 1 || 11\35 || [[Magic family#Muggles|Muggles]] ||   ||
|| 1 || 12\35 ||   || [[Avicennmic temperaments#Roman|Roman]] ||
|| 1 || 13\35 ||   || [[xenharmonic/Sensipent family|Sensipent]] but //not// [[Sensi]] ||
|| 1 || 16\35 ||   ||   ||
|| 1 || 17\35 ||   ||   ||
|| 5 || 1\35 ||   || [[Blackwood]] (very unfair, with 7/6 and 9/7) ||
|| 5 || 2\35 ||   || [[Blackwood]] (unfair, favoring 6/5) ||
|| 5 || 3\35 ||   || [[Blackwood]] (fair, favoring 5/4) ||
|| 7 || 1\35 || [[xenharmonic/Apotome family|Whitewood]]/[[xenharmonic/Apotome family#Redwood|Redwood]] ||   ||
|| 7 || 2\35 || [[xenharmonic/Greenwoodmic temperaments#Greenwood|Greenwood]] ||   ||
==<span style="background-color: #ffffff;">Commas</span>== 
35EDO tempers out the following commas. (Note: This assumes the val <35 55 81 98 121 130|.)
||~ **Comma** ||~ **Monzo** ||~ **Value (Cents)** ||~ **Name 1** ||~ **Name 2** ||~ **Name 3** ||
||= 2187/2048 || | -11 7 > ||> 113.69 ||= Apotome ||= Whitewood comma ||   ||
||= 6561/6250 || | -1 8 -5 > ||> 84.07 ||= Ripple comma ||=   ||   ||
||= 10077696/9765625 || | 9 9 -10 > ||> 54.46 ||= Mynic comma ||=   ||   ||
||= 3125/3072 || | -10 -1 5 > ||> 29.61 ||= Small diesis ||= Magic comma ||   ||
||= 78732/78125 || | 2 9 -7 > ||> 13.40 ||= Medium semicomma ||= Sensipent comma ||   ||
||= 405/392 || | -3 4 1 -2 > ||> 56.48 ||= Greenwoodma ||=   ||   ||
||= 16807/16384 || | -14 0 0 5 > ||> 44.13 ||=   ||=   ||   ||
||= 525/512 || | -9 1 2 1 > ||> 43.41 ||= Avicennma ||=   ||   ||
||= 126/125 || | 1 2 -3 1 > ||> 13.79 ||= Starling comma ||= Septimal semicomma ||   ||
||= 99/98 || | -1 2 0 -2 1 > ||> 17.58 ||= Mothwellsma ||=   ||   ||
||= 66/65 || | 1 1 -1 0 1 -1 > ||> 26.43 ||=   ||=   ||   ||
== == 

== == 

Original HTML content:

<html><head><title>35edo</title></head><body>35-tET or 35-<a class="wiki_link" href="http://xenharmonic.wikispaces.com/edo">EDO</a> refers to a tuning system which divides the octave into 35 steps of approximately <a class="wiki_link" href="http://xenharmonic.wikispaces.com/cent">34.29¢</a> each.<br />
<br />
As 35 is 5 times 7, 35edo allows for mixing the two smallest xenharmonic <a class="wiki_link" href="http://xenharmonic.wikispaces.com/macrotonal%20edos">macrotonal edos</a>: <a class="wiki_link" href="http://xenharmonic.wikispaces.com/5edo">5edo</a> and <a class="wiki_link" href="http://xenharmonic.wikispaces.com/7edo">7edo</a>. A single degree of 35edo represents the difference between 7edo's narrow fifth of 685.71¢ and 5edo's wide fifth of 720¢. 35edo can also represent the 2.3.5.7.11.17 <a class="wiki_link" href="http://xenharmonic.wikispaces.com/Just%20intonation%20subgroups">subgroup</a> and 2.9.5.7.11.17 subgroup, because of the accuracy of 9 and the flatness of all other subgroup generators. Therefore among whitewood tunings it is very versatile, you can switch between these different subgroups if you don't mind having to use two different 3/2s to reach the inconsistent 9 (a characteristic of whitewood tunings), and if you ignore <a class="wiki_link" href="http://xenharmonic.wikispaces.com/22edo">22edo</a>'s<br />
more in-tune versions of 35edo MOS's and consistent representation of both subgroups. 35edo has the optimal patent val for <a class="wiki_link" href="http://xenharmonic.wikispaces.com/Greenwoodmic%20temperaments">greenwood</a> and <a class="wiki_link" href="http://xenharmonic.wikispaces.com/Greenwoodmic%20temperaments#Secund">secund</a> temperaments.<br />
<br />
A good beggining for start to play 35-EDO is with the Sub-diatonic scale, that is a <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOS">MOS</a> of 3L2s: 9 4 9 9 4.<br />
<br />
<!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Intervals"></a><!-- ws:end:WikiTextHeadingRule:0 -->Intervals</h1>
 <br />
<br />


<table class="wiki_table">
    <tr>
        <td>Degrees of 35-EDO<br />
</td>
        <td>Cents value<br />
</td>
        <td>Ratios in 2.5.7.11.17 subgroup<br />
</td>
        <td>Ratios with flat 3<br />
</td>
        <td>Ratios with 9<br />
</td>
    </tr>
    <tr>
        <td>0<br />
</td>
        <td>0<br />
</td>
        <td>1/1<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>34.29<br />
</td>
        <td>50/49, 121/119<br />
</td>
        <td>36/35<br />
</td>
        <td>81/80<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>68.57<br />
</td>
        <td>128/125<br />
</td>
        <td>25/24<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>102.86<br />
</td>
        <td>17/16<br />
</td>
        <td><br />
</td>
        <td>18/17<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>137.14<br />
</td>
        <td><br />
</td>
        <td>12/11<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>171.43<br />
</td>
        <td>11/10<br />
</td>
        <td><br />
</td>
        <td>10/9<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td>205.71<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>9/8<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td>240<br />
</td>
        <td>8/7<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td>274.29<br />
</td>
        <td>20/17<br />
</td>
        <td>7/6<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td>308.57<br />
</td>
        <td><br />
</td>
        <td>6/5<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td>342.86<br />
</td>
        <td>17/14<br />
</td>
        <td><br />
</td>
        <td>11/9<br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td>377.14<br />
</td>
        <td>5/4<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>12<br />
</td>
        <td>411.43<br />
</td>
        <td>14/11<br />
</td>
        <td><br />
</td>
        <td>14/11<br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td>445.71<br />
</td>
        <td>22/17<br />
</td>
        <td><br />
</td>
        <td>9/7<br />
</td>
    </tr>
    <tr>
        <td>14<br />
</td>
        <td>480<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>15<br />
</td>
        <td>514.29<br />
</td>
        <td><br />
</td>
        <td>4/3<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>16<br />
</td>
        <td>548.57<br />
</td>
        <td>11/8<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>17<br />
</td>
        <td>582.86<br />
</td>
        <td>7/5<br />
</td>
        <td>24/17<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>18<br />
</td>
        <td>617.14<br />
</td>
        <td>10/7<br />
</td>
        <td>17/12<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>19<br />
</td>
        <td>651.43<br />
</td>
        <td>16/11<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>20<br />
</td>
        <td>685.71<br />
</td>
        <td><br />
</td>
        <td>3/2<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>21<br />
</td>
        <td>720<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>22<br />
</td>
        <td>754.29<br />
</td>
        <td>17/11<br />
</td>
        <td>25/24<br />
</td>
        <td>14/9<br />
</td>
    </tr>
    <tr>
        <td>23<br />
</td>
        <td>788.57<br />
</td>
        <td>11/7<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>24<br />
</td>
        <td>822.86<br />
</td>
        <td>8/5<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>25<br />
</td>
        <td>857.15<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>18/11<br />
</td>
    </tr>
    <tr>
        <td>26<br />
</td>
        <td>891.43<br />
</td>
        <td><br />
</td>
        <td>5/3<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>27<br />
</td>
        <td>925.71<br />
</td>
        <td>17/10<br />
</td>
        <td>12/7<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>28<br />
</td>
        <td>960<br />
</td>
        <td>7/4<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>29<br />
</td>
        <td>994.29<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>16/9<br />
</td>
    </tr>
    <tr>
        <td>30<br />
</td>
        <td>1028.57<br />
</td>
        <td>20/11<br />
</td>
        <td><br />
</td>
        <td>9/5<br />
</td>
    </tr>
    <tr>
        <td>31<br />
</td>
        <td>1062.86<br />
</td>
        <td><br />
</td>
        <td>11/6<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>32<br />
</td>
        <td>1097.14<br />
</td>
        <td>32/17<br />
</td>
        <td><br />
</td>
        <td>17/9<br />
</td>
    </tr>
    <tr>
        <td>33<br />
</td>
        <td>1131.43<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>34<br />
</td>
        <td>1165.71<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
</table>

<!-- ws:start:WikiTextHeadingRule:2:&lt;h1&gt; --><h1 id="toc1"><a name="Rank two temperaments"></a><!-- ws:end:WikiTextHeadingRule:2 -->Rank two temperaments</h1>
 <br />


<table class="wiki_table">
    <tr>
        <th>Periods<br />
per octave<br />
</th>
        <th>Generator<br />
</th>
        <th>Temperaments with<br />
flat 3/2 (patent val)<br />
</th>
        <th><span style="display: block; text-align: center;">Temperaments with</span><br />
<span style="display: block; text-align: center;">sharp 3/2 (35b val)</span><br />
</th>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>1\35<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>2\35<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>3\35<br />
</td>
        <td><br />
</td>
        <td><a class="wiki_link" href="/Ripple">Ripple</a><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>4\35<br />
</td>
        <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Greenwoodmic%20temperaments#Secund">Secund</a><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>6\35<br />
</td>
        <td colspan="2">Messed-up <a class="wiki_link" href="/Chromatic%20pairs#Baldy">Baldy</a><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>8\35<br />
</td>
        <td><br />
</td>
        <td>Messed-up <a class="wiki_link" href="/Orwell">Orwell</a><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>9\35<br />
</td>
        <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Myna">Myna</a><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>11\35<br />
</td>
        <td><a class="wiki_link" href="/Magic%20family#Muggles">Muggles</a><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>12\35<br />
</td>
        <td><br />
</td>
        <td><a class="wiki_link" href="/Avicennmic%20temperaments#Roman">Roman</a><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>13\35<br />
</td>
        <td><br />
</td>
        <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Sensipent%20family">Sensipent</a> but <em>not</em> <a class="wiki_link" href="/Sensi">Sensi</a><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>16\35<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>17\35<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>1\35<br />
</td>
        <td><br />
</td>
        <td><a class="wiki_link" href="/Blackwood">Blackwood</a> (very unfair, with 7/6 and 9/7)<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>2\35<br />
</td>
        <td><br />
</td>
        <td><a class="wiki_link" href="/Blackwood">Blackwood</a> (unfair, favoring 6/5)<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>3\35<br />
</td>
        <td><br />
</td>
        <td><a class="wiki_link" href="/Blackwood">Blackwood</a> (fair, favoring 5/4)<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td>1\35<br />
</td>
        <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Apotome%20family">Whitewood</a>/<a class="wiki_link" href="http://xenharmonic.wikispaces.com/Apotome%20family#Redwood">Redwood</a><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td>2\35<br />
</td>
        <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Greenwoodmic%20temperaments#Greenwood">Greenwood</a><br />
</td>
        <td><br />
</td>
    </tr>
</table>

<!-- ws:start:WikiTextHeadingRule:4:&lt;h2&gt; --><h2 id="toc2"><a name="Rank two temperaments-Commas"></a><!-- ws:end:WikiTextHeadingRule:4 --><span style="background-color: #ffffff;">Commas</span></h2>
 35EDO tempers out the following commas. (Note: This assumes the val &lt;35 55 81 98 121 130|.)<br />


<table class="wiki_table">
    <tr>
        <th><strong>Comma</strong><br />
</th>
        <th><strong>Monzo</strong><br />
</th>
        <th><strong>Value (Cents)</strong><br />
</th>
        <th><strong>Name 1</strong><br />
</th>
        <th><strong>Name 2</strong><br />
</th>
        <th><strong>Name 3</strong><br />
</th>
    </tr>
    <tr>
        <td style="text-align: center;">2187/2048<br />
</td>
        <td>| -11 7 &gt;<br />
</td>
        <td style="text-align: right;">113.69<br />
</td>
        <td style="text-align: center;">Apotome<br />
</td>
        <td style="text-align: center;">Whitewood comma<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">6561/6250<br />
</td>
        <td>| -1 8 -5 &gt;<br />
</td>
        <td style="text-align: right;">84.07<br />
</td>
        <td style="text-align: center;">Ripple comma<br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">10077696/9765625<br />
</td>
        <td>| 9 9 -10 &gt;<br />
</td>
        <td style="text-align: right;">54.46<br />
</td>
        <td style="text-align: center;">Mynic comma<br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">3125/3072<br />
</td>
        <td>| -10 -1 5 &gt;<br />
</td>
        <td style="text-align: right;">29.61<br />
</td>
        <td style="text-align: center;">Small diesis<br />
</td>
        <td style="text-align: center;">Magic comma<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">78732/78125<br />
</td>
        <td>| 2 9 -7 &gt;<br />
</td>
        <td style="text-align: right;">13.40<br />
</td>
        <td style="text-align: center;">Medium semicomma<br />
</td>
        <td style="text-align: center;">Sensipent comma<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">405/392<br />
</td>
        <td>| -3 4 1 -2 &gt;<br />
</td>
        <td style="text-align: right;">56.48<br />
</td>
        <td style="text-align: center;">Greenwoodma<br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">16807/16384<br />
</td>
        <td>| -14 0 0 5 &gt;<br />
</td>
        <td style="text-align: right;">44.13<br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">525/512<br />
</td>
        <td>| -9 1 2 1 &gt;<br />
</td>
        <td style="text-align: right;">43.41<br />
</td>
        <td style="text-align: center;">Avicennma<br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">126/125<br />
</td>
        <td>| 1 2 -3 1 &gt;<br />
</td>
        <td style="text-align: right;">13.79<br />
</td>
        <td style="text-align: center;">Starling comma<br />
</td>
        <td style="text-align: center;">Septimal semicomma<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">99/98<br />
</td>
        <td>| -1 2 0 -2 1 &gt;<br />
</td>
        <td style="text-align: right;">17.58<br />
</td>
        <td style="text-align: center;">Mothwellsma<br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">66/65<br />
</td>
        <td>| 1 1 -1 0 1 -1 &gt;<br />
</td>
        <td style="text-align: right;">26.43<br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td><br />
</td>
    </tr>
</table>

<!-- ws:start:WikiTextHeadingRule:6:&lt;h2&gt; --><h2 id="toc3"><!-- ws:end:WikiTextHeadingRule:6 --> </h2>
 <br />
<!-- ws:start:WikiTextHeadingRule:8:&lt;h2&gt; --><h2 id="toc4"><!-- ws:end:WikiTextHeadingRule:8 --> </h2>
</body></html>