359edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>Osmiorisbendi
**Imported revision 327194096 - Original comment: **
Wikispaces>Osmiorisbendi
**Imported revision 429135296 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:Osmiorisbendi|Osmiorisbendi]] and made on <tt>2012-04-30 03:30:52 UTC</tt>.<br>
: This revision was by author [[User:Osmiorisbendi|Osmiorisbendi]] and made on <tt>2013-05-06 05:08:01 UTC</tt>.<br>
: The original revision id was <tt>327194096</tt>.<br>
: The original revision id was <tt>429135296</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">=&lt;span style="color: #006138;"&gt;359 tone equal temperament&lt;/span&gt;=  
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">=&lt;span style="color: #006138; font-family: 'Times New Roman',Times,serif; font-size: 113%;"&gt;359 tone equal temperament&lt;/span&gt;=  


359-tET or 359-EDO, divide the Octave in 359 parts each one. Each step sizes approx. 3,34262 Cents. 359-EDO contains an very close approximation of the Perfect Fifth of 701,955 Cents;
359-tET or 359-EDO, divide the Octave in 359 parts each one. Each step sizes approx. 3,34262 Cents. 359-EDO contains an very close approximation of the Perfect Fifth of 701,955 Cents; &lt;span style="font-size: 13px; line-height: 1.5;"&gt;which is the &lt;/span&gt;**&lt;span style="font-size: 13px; line-height: 1.5;"&gt;210\359&lt;/span&gt;**&lt;span style="font-size: 13px; line-height: 1.5;"&gt; step, that sizes &lt;/span&gt;**&lt;span style="font-size: 13px; line-height: 1.5;"&gt;701,94986 Cents&lt;/span&gt;**&lt;span style="font-size: 13px; line-height: 1.5;"&gt;. 359-EDO is another EDO that too can represent, with high fidelity, the Pythagorean System. 359-EDO supports a type of exaggered Hornbostel mode, with the approx. of the Blown Fifth that he descripted about the Pan Flutes of some regions of southamerica, the P. Fifth (701,955 Cents) minus the Pyth. Comma (23,46 Cents) = &lt;/span&gt;**&lt;span style="font-size: 13px; line-height: 1.5;"&gt;678,495 Cents,&lt;/span&gt;**&lt;span style="font-size: 13px; line-height: 1.5;"&gt; in 359-EDO is the step &lt;/span&gt;**&lt;span style="font-size: 13px; line-height: 1.5;"&gt;203\359&lt;/span&gt;**&lt;span style="font-size: 13px; line-height: 1.5;"&gt; that sizes &lt;/span&gt;**&lt;span style="font-size: 13px; line-height: 1.5;"&gt;678,55153 Cents.&lt;/span&gt;**
which in 359-EDO is the **210\359** step, that sizes **701,94986 Cents**. 359-EDO is another EDO that too can represent, with high fidelity, the Pythagorean System. 359-EDO supports a type of exaggered Hornbostel mode, with the approx. of the Blown Fifth that he descripted about the Pan Flutes of some regions of southamerica, that is the P. Fifth (701,955 Cents) minus the Pyth. Comma (23,46 Cents) = **678,495 Cents;** in 359-EDO is the step **203\359** that sizes **678,55153 Cents.**
**Pythagorean diatonic scale: 61 61 27 61 61 61 27**
**Pythagorean Scale in 359-EDO: 61 61 27 61 61 61 27**
**Exaggered Hornbostel superdiatonic scale: 47 47 47 15 47 47 47 47 15 (fails in the position of Phi and the Square root of Pi [+1\359 step of each one]).**</pre></div>
**Exaggered Hornbostel Mode in 359-EDO: 47 47 47 15 47 47 47 47 15 (fails in the position of Phi and the Square root of Pi [+1 step each one]).**</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;359edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="x359 tone equal temperament"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;&lt;span style="color: #006138;"&gt;359 tone equal temperament&lt;/span&gt;&lt;/h1&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;359edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="x359 tone equal temperament"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;&lt;span style="color: #006138; font-family: 'Times New Roman',Times,serif; font-size: 113%;"&gt;359 tone equal temperament&lt;/span&gt;&lt;/h1&gt;
  &lt;br /&gt;
  &lt;br /&gt;
359-tET or 359-EDO, divide the Octave in 359 parts each one. Each step sizes approx. 3,34262 Cents. 359-EDO contains an very close approximation of the Perfect Fifth of 701,955 Cents;&lt;br /&gt;
359-tET or 359-EDO, divide the Octave in 359 parts each one. Each step sizes approx. 3,34262 Cents. 359-EDO contains an very close approximation of the Perfect Fifth of 701,955 Cents; &lt;span style="font-size: 13px; line-height: 1.5;"&gt;which is the &lt;/span&gt;&lt;strong&gt;&lt;span style="font-size: 13px; line-height: 1.5;"&gt;210\359&lt;/span&gt;&lt;/strong&gt;&lt;span style="font-size: 13px; line-height: 1.5;"&gt; step, that sizes &lt;/span&gt;&lt;strong&gt;&lt;span style="font-size: 13px; line-height: 1.5;"&gt;701,94986 Cents&lt;/span&gt;&lt;/strong&gt;&lt;span style="font-size: 13px; line-height: 1.5;"&gt;. 359-EDO is another EDO that too can represent, with high fidelity, the Pythagorean System. 359-EDO supports a type of exaggered Hornbostel mode, with the approx. of the Blown Fifth that he descripted about the Pan Flutes of some regions of southamerica, the P. Fifth (701,955 Cents) minus the Pyth. Comma (23,46 Cents) = &lt;/span&gt;&lt;strong&gt;&lt;span style="font-size: 13px; line-height: 1.5;"&gt;678,495 Cents,&lt;/span&gt;&lt;/strong&gt;&lt;span style="font-size: 13px; line-height: 1.5;"&gt; in 359-EDO is the step &lt;/span&gt;&lt;strong&gt;&lt;span style="font-size: 13px; line-height: 1.5;"&gt;203\359&lt;/span&gt;&lt;/strong&gt;&lt;span style="font-size: 13px; line-height: 1.5;"&gt; that sizes &lt;/span&gt;&lt;strong&gt;&lt;span style="font-size: 13px; line-height: 1.5;"&gt;678,55153 Cents.&lt;/span&gt;&lt;/strong&gt;&lt;br /&gt;
which in 359-EDO is the &lt;strong&gt;210\359&lt;/strong&gt; step, that sizes &lt;strong&gt;701,94986 Cents&lt;/strong&gt;. 359-EDO is another EDO that too can represent, with high fidelity, the Pythagorean System. 359-EDO supports a type of exaggered Hornbostel mode, with the approx. of the Blown Fifth that he descripted about the Pan Flutes of some regions of southamerica, that is the P. Fifth (701,955 Cents) minus the Pyth. Comma (23,46 Cents) = &lt;strong&gt;678,495 Cents;&lt;/strong&gt; in 359-EDO is the step &lt;strong&gt;203\359&lt;/strong&gt; that sizes &lt;strong&gt;678,55153 Cents.&lt;/strong&gt;&lt;br /&gt;
&lt;strong&gt;Pythagorean diatonic scale: 61 61 27 61 61 61 27&lt;/strong&gt;&lt;br /&gt;
&lt;strong&gt;Pythagorean Scale in 359-EDO: 61 61 27 61 61 61 27&lt;/strong&gt;&lt;br /&gt;
&lt;strong&gt;Exaggered Hornbostel superdiatonic scale: 47 47 47 15 47 47 47 47 15 (fails in the position of Phi and the Square root of Pi [+1\359 step of each one]).&lt;/strong&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>
&lt;strong&gt;Exaggered Hornbostel Mode in 359-EDO: 47 47 47 15 47 47 47 47 15 (fails in the position of Phi and the Square root of Pi [+1 step each one]).&lt;/strong&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>

Revision as of 05:08, 6 May 2013

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author Osmiorisbendi and made on 2013-05-06 05:08:01 UTC.
The original revision id was 429135296.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

=<span style="color: #006138; font-family: 'Times New Roman',Times,serif; font-size: 113%;">359 tone equal temperament</span>= 

359-tET or 359-EDO, divide the Octave in 359 parts each one. Each step sizes approx. 3,34262 Cents. 359-EDO contains an very close approximation of the Perfect Fifth of 701,955 Cents; <span style="font-size: 13px; line-height: 1.5;">which is the </span>**<span style="font-size: 13px; line-height: 1.5;">210\359</span>**<span style="font-size: 13px; line-height: 1.5;"> step, that sizes </span>**<span style="font-size: 13px; line-height: 1.5;">701,94986 Cents</span>**<span style="font-size: 13px; line-height: 1.5;">. 359-EDO is another EDO that too can represent, with high fidelity, the Pythagorean System. 359-EDO supports a type of exaggered Hornbostel mode, with the approx. of the Blown Fifth that he descripted about the Pan Flutes of some regions of southamerica, the P. Fifth (701,955 Cents) minus the Pyth. Comma (23,46 Cents) = </span>**<span style="font-size: 13px; line-height: 1.5;">678,495 Cents,</span>**<span style="font-size: 13px; line-height: 1.5;"> in 359-EDO is the step </span>**<span style="font-size: 13px; line-height: 1.5;">203\359</span>**<span style="font-size: 13px; line-height: 1.5;"> that sizes </span>**<span style="font-size: 13px; line-height: 1.5;">678,55153 Cents.</span>**
**Pythagorean diatonic scale: 61 61 27 61 61 61 27**
**Exaggered Hornbostel superdiatonic scale: 47 47 47 15 47 47 47 47 15 (fails in the position of Phi and the Square root of Pi [+1\359 step of each one]).**

Original HTML content:

<html><head><title>359edo</title></head><body><!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="x359 tone equal temperament"></a><!-- ws:end:WikiTextHeadingRule:0 --><span style="color: #006138; font-family: 'Times New Roman',Times,serif; font-size: 113%;">359 tone equal temperament</span></h1>
 <br />
359-tET or 359-EDO, divide the Octave in 359 parts each one. Each step sizes approx. 3,34262 Cents. 359-EDO contains an very close approximation of the Perfect Fifth of 701,955 Cents; <span style="font-size: 13px; line-height: 1.5;">which is the </span><strong><span style="font-size: 13px; line-height: 1.5;">210\359</span></strong><span style="font-size: 13px; line-height: 1.5;"> step, that sizes </span><strong><span style="font-size: 13px; line-height: 1.5;">701,94986 Cents</span></strong><span style="font-size: 13px; line-height: 1.5;">. 359-EDO is another EDO that too can represent, with high fidelity, the Pythagorean System. 359-EDO supports a type of exaggered Hornbostel mode, with the approx. of the Blown Fifth that he descripted about the Pan Flutes of some regions of southamerica, the P. Fifth (701,955 Cents) minus the Pyth. Comma (23,46 Cents) = </span><strong><span style="font-size: 13px; line-height: 1.5;">678,495 Cents,</span></strong><span style="font-size: 13px; line-height: 1.5;"> in 359-EDO is the step </span><strong><span style="font-size: 13px; line-height: 1.5;">203\359</span></strong><span style="font-size: 13px; line-height: 1.5;"> that sizes </span><strong><span style="font-size: 13px; line-height: 1.5;">678,55153 Cents.</span></strong><br />
<strong>Pythagorean diatonic scale: 61 61 27 61 61 61 27</strong><br />
<strong>Exaggered Hornbostel superdiatonic scale: 47 47 47 15 47 47 47 47 15 (fails in the position of Phi and the Square root of Pi [+1\359 step of each one]).</strong></body></html>