29edo: Difference between revisions
Jump to navigation
Jump to search
Wikispaces>genewardsmith **Imported revision 234387598 - Original comment: ** |
Wikispaces>xenwolf **Imported revision 234400422 - Original comment: decimal mantissa of commas: 5 digits** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User: | : This revision was by author [[User:xenwolf|xenwolf]] and made on <tt>2011-06-05 16:33:24 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>234400422</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt>decimal mantissa of commas: 5 digits</tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
<h4>Original Wikitext content:</h4> | <h4>Original Wikitext content:</h4> | ||
Line 9: | Line 9: | ||
=<span style="color: #ff4700; font-size: 103%;">29 tone equal temperament</span>= | =<span style="color: #ff4700; font-size: 103%;">29 tone equal temperament</span>= | ||
29edo divides the 2:1 octave into 29 equal steps of approximately 41.37931 | 29edo divides the 2:1 [[octave]] into 29 equal steps of approximately 41.37931 [[cent]]s. | ||
29 is the lowest edo which approximates the [[3_2|3:2]] just fifth more accurately than [[12edo]]: 3/2 = 701.955... cents; 17 degrees of 29edo = 703.448... cents. Since the fifth is slightly sharp, 29edo is a [[positive temperament]] -- a Superpythagorean instead of a Meantone system. | 29 is the lowest edo which approximates the [[3_2|3:2]] just fifth more accurately than [[12edo]]: 3/2 = 701.955... cents; 17 degrees of 29edo = 703.448... cents. Since the fifth is slightly sharp, 29edo is a [[positive temperament]] -- a Superpythagorean instead of a Meantone system. | ||
The 3 is the only harmonic, of the intelligibly low ones anyway, that 29edo approximates very closely, and it does so quite well. Nonetheless, and rather surprisingly, 29 is the smallest equal division which consistently represents the 15 odd limit. It is able to do this since it has an accurate 3, and the 5, 7, 11 and 13, while not very accurate, are all tuned flatly. Hence it tempers out a succession of fairly large commas: 250/243 in the 5-limit, 49/48 in the 7-limit, 55/54 in the 11-limit, and 65/64 in the 13-limit. If using these approximations is desired, 29edo actually shines, and it can be used for such things as an alternative to [[19edo]] for [[Marvel temperaments|negri]]. | The 3 is the only harmonic, of the intelligibly low ones anyway, that 29edo approximates very closely, and it does so quite well. Nonetheless, and rather surprisingly, 29 is the smallest equal division which consistently represents the 15 odd limit. It is able to do this since it has an accurate 3, and the 5, 7, 11 and 13, while not very accurate, are all tuned flatly. Hence it tempers out a succession of fairly large commas: 250/243 in the [[5-limit]], 49/48 in the [[7-limit]], 55/54 in the [[11-limit]], and 65/64 in the [[13-limit]]. If using these approximations is desired, 29edo actually shines, and it can be used for such things as an alternative to [[19edo]] for [[Marvel temperaments|negri]]. | ||
Another possible use for 29edo is as an equally tempered para-pythagorean scale. Using its fifth as a generator leads to a variant of [[Schismatic family|garibaldi temperament]] which is not very accurate but which has relatively low 13-limit complexity. | Another possible use for 29edo is as an equally tempered para-pythagorean scale. Using its fifth as a generator leads to a variant of [[Schismatic family|garibaldi temperament]] which is not very accurate but which has relatively low 13-limit complexity. | ||
Line 50: | Line 50: | ||
|| 27 || 1117.241 || | || 27 || 1117.241 || | ||
|| 28 || 1158.621 || | || 28 || 1158.621 || | ||
=Commas= | =Commas= | ||
29 EDO tempers out the following commas. (Note: This assumes the val < 29 46 67 81 100 107 |.) | 29 EDO tempers out the following commas. (Note: This assumes the val < 29 46 67 81 100 107 |, cent values rounded to 5 digits.) | ||
||~ Comma ||~ Monzo ||~ Value (Cents) ||~ Name 1 ||~ Name 2 || | ||~ Comma ||~ Monzo ||~ Value (Cents) ||~ Name 1 ||~ Name 2 || | ||
||= 16875/16384 || | -14 3 4 > ||> 51. | ||= 16875/16384 || | -14 3 4 > ||> 51.120 ||= Negri Comma ||= Double Augmentation Diesis || | ||
||= 250/243 || | 1 -5 3 > ||> 49. | ||= 250/243 || | 1 -5 3 > ||> 49.166 ||= Maximal Diesis ||= Porcupine Comma || | ||
||= 32805/32768 || | -15 8 1 > ||> 1. | ||= 32805/32768 || | -15 8 1 > ||> 1.9537 ||= Schisma ||= || | ||
||= 525/512 || | -9 1 2 1 > ||> 43. | ||= 525/512 || | -9 1 2 1 > ||> 43.408 ||= Avicennma ||= Avicenna's Enharmonic Diesis || | ||
||= 49/48 || | -4 -1 0 2 > ||> 35. | ||= 49/48 || | -4 -1 0 2 > ||> 35.697 ||= Slendro Diesis ||= || | ||
||= 686/675 || | 1 -3 -2 3 > ||> 27. | ||= 686/675 || | 1 -3 -2 3 > ||> 27.985 ||= Senga ||= || | ||
||= 64827/64000 || | -9 3 -3 4 > ||> 22. | ||= 64827/64000 || | -9 3 -3 4 > ||> 22.227 ||= Squalentine ||= || | ||
||= 3125/3087 || | 0 -2 5 -3 > ||> 21. | ||= 3125/3087 || | 0 -2 5 -3 > ||> 21.181 ||= Gariboh ||= || | ||
||= 50421/50000 || | -4 1 -5 5 > ||> 14. | ||= 50421/50000 || | -4 1 -5 5 > ||> 14.516 ||= Trimyna ||= || | ||
||= 4000/3969 || | 5 -4 3 -2 > ||> 13. | ||= 4000/3969 || | 5 -4 3 -2 > ||> 13.469 ||= Octagar ||= || | ||
||= 225/224 || | -5 2 2 -1 > ||> 7. | ||= 225/224 || | -5 2 2 -1 > ||> 7.7115 ||= Septimal Kleisma ||= Marvel Comma || | ||
||= 5120/5103 || | 10 -6 1 -1 > ||> 5. | ||= 5120/5103 || | 10 -6 1 -1 > ||> 5.7578 ||= Hemifamity ||= || | ||
||= 4994735/4983772 || | 25 -14 0 -1 > ||> 3. | ||= 4994735/4983772 || | 25 -14 0 -1 > ||> 3.8041 ||= Garischisma ||= || | ||
||= 100/99 || | 2 -2 2 0 -1 > ||> 17. | ||= 100/99 || | 2 -2 2 0 -1 > ||> 17.399 ||= Ptolemisma ||= || | ||
||= 121/120 || | -3 -1 -1 0 2 > ||> 14. | ||= 121/120 || | -3 -1 -1 0 2 > ||> 14.367 ||= Biyatisma ||= || | ||
||= 896/891 || | 7 -4 0 1 -1 > ||> 9. | ||= 896/891 || | 7 -4 0 1 -1 > ||> 9.6880 ||= Pentacircle ||= || | ||
||= 441/440 || | -3 2 -1 2 -1 > ||> 3. | ||= 441/440 || | -3 2 -1 2 -1 > ||> 3.9302 ||= Werckisma ||= || | ||
||= 4000/3993 || | 5 -1 3 0 -3 > ||> 3. | ||= 4000/3993 || | 5 -1 3 0 -3 > ||> 3.0323 ||= Wizardharry ||= || | ||
||= 9801/9800 || | -3 4 -2 -2 2 > ||> 0. | ||= 9801/9800 || | -3 4 -2 -2 2 > ||> 0.17665 ||= Kalisma ||= Gauss' Comma || | ||
||= 91/90 || | -1 -2 -1 1 0 1 > ||> 19. | ||= 91/90 || | -1 -2 -1 1 0 1 > ||> 19.130 ||= Superleap ||= || | ||
=Music= | =Music= | ||
[[http://tinyurl.com/45lancy|Paint in the Water 29]] by [[Igliashon Jones]]</pre></div> | [[http://tinyurl.com/45lancy|Paint in the Water 29]] by [[Igliashon Jones]]</pre></div> | ||
Line 79: | Line 81: | ||
<!-- ws:end:WikiTextTocRule:13 --><!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="x29 tone equal temperament"></a><!-- ws:end:WikiTextHeadingRule:0 --><span style="color: #ff4700; font-size: 103%;">29 tone equal temperament</span></h1> | <!-- ws:end:WikiTextTocRule:13 --><!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="x29 tone equal temperament"></a><!-- ws:end:WikiTextHeadingRule:0 --><span style="color: #ff4700; font-size: 103%;">29 tone equal temperament</span></h1> | ||
<br /> | <br /> | ||
29edo divides the 2:1 octave into 29 equal steps of approximately 41.37931 | 29edo divides the 2:1 <a class="wiki_link" href="/octave">octave</a> into 29 equal steps of approximately 41.37931 <a class="wiki_link" href="/cent">cent</a>s.<br /> | ||
<br /> | <br /> | ||
29 is the lowest edo which approximates the <a class="wiki_link" href="/3_2">3:2</a> just fifth more accurately than <a class="wiki_link" href="/12edo">12edo</a>: 3/2 = 701.955... cents; 17 degrees of 29edo = 703.448... cents. Since the fifth is slightly sharp, 29edo is a <a class="wiki_link" href="/positive%20temperament">positive temperament</a> -- a Superpythagorean instead of a Meantone system.<br /> | 29 is the lowest edo which approximates the <a class="wiki_link" href="/3_2">3:2</a> just fifth more accurately than <a class="wiki_link" href="/12edo">12edo</a>: 3/2 = 701.955... cents; 17 degrees of 29edo = 703.448... cents. Since the fifth is slightly sharp, 29edo is a <a class="wiki_link" href="/positive%20temperament">positive temperament</a> -- a Superpythagorean instead of a Meantone system.<br /> | ||
<br /> | <br /> | ||
The 3 is the only harmonic, of the intelligibly low ones anyway, that 29edo approximates very closely, and it does so quite well. Nonetheless, and rather surprisingly, 29 is the smallest equal division which consistently represents the 15 odd limit. It is able to do this since it has an accurate 3, and the 5, 7, 11 and 13, while not very accurate, are all tuned flatly. Hence it tempers out a succession of fairly large commas: 250/243 in the 5-limit, 49/48 in the 7-limit, 55/54 in the 11-limit, and 65/64 in the 13-limit. If using these approximations is desired, 29edo actually shines, and it can be used for such things as an alternative to <a class="wiki_link" href="/19edo">19edo</a> for <a class="wiki_link" href="/Marvel%20temperaments">negri</a>.<br /> | The 3 is the only harmonic, of the intelligibly low ones anyway, that 29edo approximates very closely, and it does so quite well. Nonetheless, and rather surprisingly, 29 is the smallest equal division which consistently represents the 15 odd limit. It is able to do this since it has an accurate 3, and the 5, 7, 11 and 13, while not very accurate, are all tuned flatly. Hence it tempers out a succession of fairly large commas: 250/243 in the <a class="wiki_link" href="/5-limit">5-limit</a>, 49/48 in the <a class="wiki_link" href="/7-limit">7-limit</a>, 55/54 in the <a class="wiki_link" href="/11-limit">11-limit</a>, and 65/64 in the <a class="wiki_link" href="/13-limit">13-limit</a>. If using these approximations is desired, 29edo actually shines, and it can be used for such things as an alternative to <a class="wiki_link" href="/19edo">19edo</a> for <a class="wiki_link" href="/Marvel%20temperaments">negri</a>.<br /> | ||
<br /> | <br /> | ||
Another possible use for 29edo is as an equally tempered para-pythagorean scale. Using its fifth as a generator leads to a variant of <a class="wiki_link" href="/Schismatic%20family">garibaldi temperament</a> which is not very accurate but which has relatively low 13-limit complexity.<br /> | Another possible use for 29edo is as an equally tempered para-pythagorean scale. Using its fifth as a generator leads to a variant of <a class="wiki_link" href="/Schismatic%20family">garibaldi temperament</a> which is not very accurate but which has relatively low 13-limit complexity.<br /> | ||
Line 275: | Line 277: | ||
</table> | </table> | ||
<br /> | |||
<!-- ws:start:WikiTextHeadingRule:4:&lt;h1&gt; --><h1 id="toc2"><a name="Commas"></a><!-- ws:end:WikiTextHeadingRule:4 -->Commas</h1> | <!-- ws:start:WikiTextHeadingRule:4:&lt;h1&gt; --><h1 id="toc2"><a name="Commas"></a><!-- ws:end:WikiTextHeadingRule:4 -->Commas</h1> | ||
29 EDO tempers out the following commas. (Note: This assumes the val &lt; 29 46 67 81 100 107 |.)<br /> | 29 EDO tempers out the following commas. (Note: This assumes the val &lt; 29 46 67 81 100 107 |, cent values rounded to 5 digits.)<br /> | ||
Line 297: | Line 300: | ||
<td>| -14 3 4 &gt;<br /> | <td>| -14 3 4 &gt;<br /> | ||
</td> | </td> | ||
<td style="text-align: right;">51. | <td style="text-align: right;">51.120<br /> | ||
</td> | </td> | ||
<td style="text-align: center;">Negri Comma<br /> | <td style="text-align: center;">Negri Comma<br /> | ||
Line 309: | Line 312: | ||
<td>| 1 -5 3 &gt;<br /> | <td>| 1 -5 3 &gt;<br /> | ||
</td> | </td> | ||
<td style="text-align: right;">49. | <td style="text-align: right;">49.166<br /> | ||
</td> | </td> | ||
<td style="text-align: center;">Maximal Diesis<br /> | <td style="text-align: center;">Maximal Diesis<br /> | ||
Line 321: | Line 324: | ||
<td>| -15 8 1 &gt;<br /> | <td>| -15 8 1 &gt;<br /> | ||
</td> | </td> | ||
<td style="text-align: right;">1. | <td style="text-align: right;">1.9537<br /> | ||
</td> | </td> | ||
<td style="text-align: center;">Schisma<br /> | <td style="text-align: center;">Schisma<br /> | ||
Line 333: | Line 336: | ||
<td>| -9 1 2 1 &gt;<br /> | <td>| -9 1 2 1 &gt;<br /> | ||
</td> | </td> | ||
<td style="text-align: right;">43. | <td style="text-align: right;">43.408<br /> | ||
</td> | </td> | ||
<td style="text-align: center;">Avicennma<br /> | <td style="text-align: center;">Avicennma<br /> | ||
Line 345: | Line 348: | ||
<td>| -4 -1 0 2 &gt;<br /> | <td>| -4 -1 0 2 &gt;<br /> | ||
</td> | </td> | ||
<td style="text-align: right;">35. | <td style="text-align: right;">35.697<br /> | ||
</td> | </td> | ||
<td style="text-align: center;">Slendro Diesis<br /> | <td style="text-align: center;">Slendro Diesis<br /> | ||
Line 357: | Line 360: | ||
<td>| 1 -3 -2 3 &gt;<br /> | <td>| 1 -3 -2 3 &gt;<br /> | ||
</td> | </td> | ||
<td style="text-align: right;">27. | <td style="text-align: right;">27.985<br /> | ||
</td> | </td> | ||
<td style="text-align: center;">Senga<br /> | <td style="text-align: center;">Senga<br /> | ||
Line 369: | Line 372: | ||
<td>| -9 3 -3 4 &gt;<br /> | <td>| -9 3 -3 4 &gt;<br /> | ||
</td> | </td> | ||
<td style="text-align: right;">22. | <td style="text-align: right;">22.227<br /> | ||
</td> | </td> | ||
<td style="text-align: center;">Squalentine<br /> | <td style="text-align: center;">Squalentine<br /> | ||
Line 381: | Line 384: | ||
<td>| 0 -2 5 -3 &gt;<br /> | <td>| 0 -2 5 -3 &gt;<br /> | ||
</td> | </td> | ||
<td style="text-align: right;">21. | <td style="text-align: right;">21.181<br /> | ||
</td> | </td> | ||
<td style="text-align: center;">Gariboh<br /> | <td style="text-align: center;">Gariboh<br /> | ||
Line 393: | Line 396: | ||
<td>| -4 1 -5 5 &gt;<br /> | <td>| -4 1 -5 5 &gt;<br /> | ||
</td> | </td> | ||
<td style="text-align: right;">14. | <td style="text-align: right;">14.516<br /> | ||
</td> | </td> | ||
<td style="text-align: center;">Trimyna<br /> | <td style="text-align: center;">Trimyna<br /> | ||
Line 405: | Line 408: | ||
<td>| 5 -4 3 -2 &gt;<br /> | <td>| 5 -4 3 -2 &gt;<br /> | ||
</td> | </td> | ||
<td style="text-align: right;">13. | <td style="text-align: right;">13.469<br /> | ||
</td> | </td> | ||
<td style="text-align: center;">Octagar<br /> | <td style="text-align: center;">Octagar<br /> | ||
Line 417: | Line 420: | ||
<td>| -5 2 2 -1 &gt;<br /> | <td>| -5 2 2 -1 &gt;<br /> | ||
</td> | </td> | ||
<td style="text-align: right;">7. | <td style="text-align: right;">7.7115<br /> | ||
</td> | </td> | ||
<td style="text-align: center;">Septimal Kleisma<br /> | <td style="text-align: center;">Septimal Kleisma<br /> | ||
Line 429: | Line 432: | ||
<td>| 10 -6 1 -1 &gt;<br /> | <td>| 10 -6 1 -1 &gt;<br /> | ||
</td> | </td> | ||
<td style="text-align: right;">5. | <td style="text-align: right;">5.7578<br /> | ||
</td> | </td> | ||
<td style="text-align: center;">Hemifamity<br /> | <td style="text-align: center;">Hemifamity<br /> | ||
Line 441: | Line 444: | ||
<td>| 25 -14 0 -1 &gt;<br /> | <td>| 25 -14 0 -1 &gt;<br /> | ||
</td> | </td> | ||
<td style="text-align: right;">3. | <td style="text-align: right;">3.8041<br /> | ||
</td> | </td> | ||
<td style="text-align: center;">Garischisma<br /> | <td style="text-align: center;">Garischisma<br /> | ||
Line 453: | Line 456: | ||
<td>| 2 -2 2 0 -1 &gt;<br /> | <td>| 2 -2 2 0 -1 &gt;<br /> | ||
</td> | </td> | ||
<td style="text-align: right;">17. | <td style="text-align: right;">17.399<br /> | ||
</td> | </td> | ||
<td style="text-align: center;">Ptolemisma<br /> | <td style="text-align: center;">Ptolemisma<br /> | ||
Line 465: | Line 468: | ||
<td>| -3 -1 -1 0 2 &gt;<br /> | <td>| -3 -1 -1 0 2 &gt;<br /> | ||
</td> | </td> | ||
<td style="text-align: right;">14. | <td style="text-align: right;">14.367<br /> | ||
</td> | </td> | ||
<td style="text-align: center;">Biyatisma<br /> | <td style="text-align: center;">Biyatisma<br /> | ||
Line 477: | Line 480: | ||
<td>| 7 -4 0 1 -1 &gt;<br /> | <td>| 7 -4 0 1 -1 &gt;<br /> | ||
</td> | </td> | ||
<td style="text-align: right;">9. | <td style="text-align: right;">9.6880<br /> | ||
</td> | </td> | ||
<td style="text-align: center;">Pentacircle<br /> | <td style="text-align: center;">Pentacircle<br /> | ||
Line 489: | Line 492: | ||
<td>| -3 2 -1 2 -1 &gt;<br /> | <td>| -3 2 -1 2 -1 &gt;<br /> | ||
</td> | </td> | ||
<td style="text-align: right;">3. | <td style="text-align: right;">3.9302<br /> | ||
</td> | </td> | ||
<td style="text-align: center;">Werckisma<br /> | <td style="text-align: center;">Werckisma<br /> | ||
Line 501: | Line 504: | ||
<td>| 5 -1 3 0 -3 &gt;<br /> | <td>| 5 -1 3 0 -3 &gt;<br /> | ||
</td> | </td> | ||
<td style="text-align: right;">3. | <td style="text-align: right;">3.0323<br /> | ||
</td> | </td> | ||
<td style="text-align: center;">Wizardharry<br /> | <td style="text-align: center;">Wizardharry<br /> | ||
Line 513: | Line 516: | ||
<td>| -3 4 -2 -2 2 &gt;<br /> | <td>| -3 4 -2 -2 2 &gt;<br /> | ||
</td> | </td> | ||
<td style="text-align: right;">0. | <td style="text-align: right;">0.17665<br /> | ||
</td> | </td> | ||
<td style="text-align: center;">Kalisma<br /> | <td style="text-align: center;">Kalisma<br /> | ||
Line 525: | Line 528: | ||
<td>| -1 -2 -1 1 0 1 &gt;<br /> | <td>| -1 -2 -1 1 0 1 &gt;<br /> | ||
</td> | </td> | ||
<td style="text-align: right;">19. | <td style="text-align: right;">19.130<br /> | ||
</td> | </td> | ||
<td style="text-align: center;">Superleap<br /> | <td style="text-align: center;">Superleap<br /> | ||
Line 534: | Line 537: | ||
</table> | </table> | ||
<br /> | |||
<!-- ws:start:WikiTextHeadingRule:6:&lt;h1&gt; --><h1 id="toc3"><a name="Music"></a><!-- ws:end:WikiTextHeadingRule:6 -->Music</h1> | <!-- ws:start:WikiTextHeadingRule:6:&lt;h1&gt; --><h1 id="toc3"><a name="Music"></a><!-- ws:end:WikiTextHeadingRule:6 -->Music</h1> | ||
<a class="wiki_link_ext" href="http://tinyurl.com/45lancy" rel="nofollow">Paint in the Water 29</a> by <a class="wiki_link" href="/Igliashon%20Jones">Igliashon Jones</a></body></html></pre></div> | <a class="wiki_link_ext" href="http://tinyurl.com/45lancy" rel="nofollow">Paint in the Water 29</a> by <a class="wiki_link" href="/Igliashon%20Jones">Igliashon Jones</a></body></html></pre></div> |
Revision as of 16:33, 5 June 2011
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author xenwolf and made on 2011-06-05 16:33:24 UTC.
- The original revision id was 234400422.
- The revision comment was: decimal mantissa of commas: 5 digits
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
[[toc|flat]] =<span style="color: #ff4700; font-size: 103%;">29 tone equal temperament</span>= 29edo divides the 2:1 [[octave]] into 29 equal steps of approximately 41.37931 [[cent]]s. 29 is the lowest edo which approximates the [[3_2|3:2]] just fifth more accurately than [[12edo]]: 3/2 = 701.955... cents; 17 degrees of 29edo = 703.448... cents. Since the fifth is slightly sharp, 29edo is a [[positive temperament]] -- a Superpythagorean instead of a Meantone system. The 3 is the only harmonic, of the intelligibly low ones anyway, that 29edo approximates very closely, and it does so quite well. Nonetheless, and rather surprisingly, 29 is the smallest equal division which consistently represents the 15 odd limit. It is able to do this since it has an accurate 3, and the 5, 7, 11 and 13, while not very accurate, are all tuned flatly. Hence it tempers out a succession of fairly large commas: 250/243 in the [[5-limit]], 49/48 in the [[7-limit]], 55/54 in the [[11-limit]], and 65/64 in the [[13-limit]]. If using these approximations is desired, 29edo actually shines, and it can be used for such things as an alternative to [[19edo]] for [[Marvel temperaments|negri]]. Another possible use for 29edo is as an equally tempered para-pythagorean scale. Using its fifth as a generator leads to a variant of [[Schismatic family|garibaldi temperament]] which is not very accurate but which has relatively low 13-limit complexity. Moreover, it represents the 2.3.11/5.13/5 subgroup to very high accuracy, and 2.3.7/5.11/5.13/5 to a lesser but still good accuracy, and so can be used with this subgroup, which is liberally supplied with chords such as the 1-11/7-13/7 chord, the [[The Archipelago|barbados triad]] 1-13/10-3/2, the minor barbados triad 1-15/13-3/2, the 1-14/11-3/2 triad and the 1-13/11-3/2 triad. 29 tempers out 352/351, 676/675 and 4000/3993 from the 2.3.11/5.13/5 subgroup, and in addition 196/195 and 364/363 from the 2.3.7/5.11/5.13/5 subgroup, so we have various relationships from the tempering, such as the fact that the 1-13/11-3/2 chord and the 1-14/11-3/2 chord are inverses of each other, a major-minor pairing. A larger subgroup containing both of these subgroups is the [[k*N subgroups|3*29 subgroup]] 2.3.125.175.275.325; on this subgroup 29 tunes the same as 87, and the commas of 29 on this subgroup are the same as the 13-limit commas of 87. Still another subgroup of interest is the [[k*N subgroups|2*29 subgroup]] 2.3.25.35.55.65.85; on this subgroup 29 tunes the same as 58 and has the same 17-limit commas. =Intervals= || Degrees of 29-EDO || Cents value || || 0 || 0 || || 1 || 41.379 || || 2 || 82.759 || || 3 || 124.138 || || 4 || 165.517 || || 5 || 206.897 || || 6 || 248.276 || || 7 || 289.655 || || 8 || 331.034 || || 9 || 372.414 || || 10 || 413.793 || || 11 || 455.172 || || 12 || 496.552 || || 13 || 537.931 || || 14 || 579.310 || || 15 || 620.690 || || 16 || 662.069 || || 17 || 703.448 || || 18 || 744.828 || || 19 || 786.207 || || 20 || 827.586 || || 21 || 868.966 || || 22 || 910.345 || || 23 || 951.724 || || 24 || 993.103 || || 25 || 1034.483 || || 26 || 1075.862 || || 27 || 1117.241 || || 28 || 1158.621 || =Commas= 29 EDO tempers out the following commas. (Note: This assumes the val < 29 46 67 81 100 107 |, cent values rounded to 5 digits.) ||~ Comma ||~ Monzo ||~ Value (Cents) ||~ Name 1 ||~ Name 2 || ||= 16875/16384 || | -14 3 4 > ||> 51.120 ||= Negri Comma ||= Double Augmentation Diesis || ||= 250/243 || | 1 -5 3 > ||> 49.166 ||= Maximal Diesis ||= Porcupine Comma || ||= 32805/32768 || | -15 8 1 > ||> 1.9537 ||= Schisma ||= || ||= 525/512 || | -9 1 2 1 > ||> 43.408 ||= Avicennma ||= Avicenna's Enharmonic Diesis || ||= 49/48 || | -4 -1 0 2 > ||> 35.697 ||= Slendro Diesis ||= || ||= 686/675 || | 1 -3 -2 3 > ||> 27.985 ||= Senga ||= || ||= 64827/64000 || | -9 3 -3 4 > ||> 22.227 ||= Squalentine ||= || ||= 3125/3087 || | 0 -2 5 -3 > ||> 21.181 ||= Gariboh ||= || ||= 50421/50000 || | -4 1 -5 5 > ||> 14.516 ||= Trimyna ||= || ||= 4000/3969 || | 5 -4 3 -2 > ||> 13.469 ||= Octagar ||= || ||= 225/224 || | -5 2 2 -1 > ||> 7.7115 ||= Septimal Kleisma ||= Marvel Comma || ||= 5120/5103 || | 10 -6 1 -1 > ||> 5.7578 ||= Hemifamity ||= || ||= 4994735/4983772 || | 25 -14 0 -1 > ||> 3.8041 ||= Garischisma ||= || ||= 100/99 || | 2 -2 2 0 -1 > ||> 17.399 ||= Ptolemisma ||= || ||= 121/120 || | -3 -1 -1 0 2 > ||> 14.367 ||= Biyatisma ||= || ||= 896/891 || | 7 -4 0 1 -1 > ||> 9.6880 ||= Pentacircle ||= || ||= 441/440 || | -3 2 -1 2 -1 > ||> 3.9302 ||= Werckisma ||= || ||= 4000/3993 || | 5 -1 3 0 -3 > ||> 3.0323 ||= Wizardharry ||= || ||= 9801/9800 || | -3 4 -2 -2 2 > ||> 0.17665 ||= Kalisma ||= Gauss' Comma || ||= 91/90 || | -1 -2 -1 1 0 1 > ||> 19.130 ||= Superleap ||= || =Music= [[http://tinyurl.com/45lancy|Paint in the Water 29]] by [[Igliashon Jones]]
Original HTML content:
<html><head><title>29edo</title></head><body><!-- ws:start:WikiTextTocRule:8:<img id="wikitext@@toc@@flat" class="WikiMedia WikiMediaTocFlat" title="Table of Contents" src="/site/embedthumbnail/toc/flat?w=100&h=16"/> --><!-- ws:end:WikiTextTocRule:8 --><!-- ws:start:WikiTextTocRule:9: --><a href="#x29 tone equal temperament">29 tone equal temperament</a><!-- ws:end:WikiTextTocRule:9 --><!-- ws:start:WikiTextTocRule:10: --> | <a href="#Intervals">Intervals</a><!-- ws:end:WikiTextTocRule:10 --><!-- ws:start:WikiTextTocRule:11: --> | <a href="#Commas">Commas</a><!-- ws:end:WikiTextTocRule:11 --><!-- ws:start:WikiTextTocRule:12: --> | <a href="#Music">Music</a><!-- ws:end:WikiTextTocRule:12 --><!-- ws:start:WikiTextTocRule:13: --> <!-- ws:end:WikiTextTocRule:13 --><!-- ws:start:WikiTextHeadingRule:0:<h1> --><h1 id="toc0"><a name="x29 tone equal temperament"></a><!-- ws:end:WikiTextHeadingRule:0 --><span style="color: #ff4700; font-size: 103%;">29 tone equal temperament</span></h1> <br /> 29edo divides the 2:1 <a class="wiki_link" href="/octave">octave</a> into 29 equal steps of approximately 41.37931 <a class="wiki_link" href="/cent">cent</a>s.<br /> <br /> 29 is the lowest edo which approximates the <a class="wiki_link" href="/3_2">3:2</a> just fifth more accurately than <a class="wiki_link" href="/12edo">12edo</a>: 3/2 = 701.955... cents; 17 degrees of 29edo = 703.448... cents. Since the fifth is slightly sharp, 29edo is a <a class="wiki_link" href="/positive%20temperament">positive temperament</a> -- a Superpythagorean instead of a Meantone system.<br /> <br /> The 3 is the only harmonic, of the intelligibly low ones anyway, that 29edo approximates very closely, and it does so quite well. Nonetheless, and rather surprisingly, 29 is the smallest equal division which consistently represents the 15 odd limit. It is able to do this since it has an accurate 3, and the 5, 7, 11 and 13, while not very accurate, are all tuned flatly. Hence it tempers out a succession of fairly large commas: 250/243 in the <a class="wiki_link" href="/5-limit">5-limit</a>, 49/48 in the <a class="wiki_link" href="/7-limit">7-limit</a>, 55/54 in the <a class="wiki_link" href="/11-limit">11-limit</a>, and 65/64 in the <a class="wiki_link" href="/13-limit">13-limit</a>. If using these approximations is desired, 29edo actually shines, and it can be used for such things as an alternative to <a class="wiki_link" href="/19edo">19edo</a> for <a class="wiki_link" href="/Marvel%20temperaments">negri</a>.<br /> <br /> Another possible use for 29edo is as an equally tempered para-pythagorean scale. Using its fifth as a generator leads to a variant of <a class="wiki_link" href="/Schismatic%20family">garibaldi temperament</a> which is not very accurate but which has relatively low 13-limit complexity.<br /> <br /> Moreover, it represents the 2.3.11/5.13/5 subgroup to very high accuracy, and 2.3.7/5.11/5.13/5 to a lesser but still good accuracy, and so can be used with this subgroup, which is liberally supplied with chords such as the 1-11/7-13/7 chord, the <a class="wiki_link" href="/The%20Archipelago">barbados triad</a> 1-13/10-3/2, the minor barbados triad 1-15/13-3/2, the 1-14/11-3/2 triad and the 1-13/11-3/2 triad. 29 tempers out 352/351, 676/675 and 4000/3993 from the 2.3.11/5.13/5 subgroup, and in addition 196/195 and 364/363 from the 2.3.7/5.11/5.13/5 subgroup, so we have various relationships from the tempering, such as the fact that the 1-13/11-3/2 chord and the 1-14/11-3/2 chord are inverses of each other, a major-minor pairing. A larger subgroup containing both of these subgroups is the <a class="wiki_link" href="/k%2AN%20subgroups">3*29 subgroup</a> 2.3.125.175.275.325; on this subgroup 29 tunes the same as 87, and the commas of 29 on this subgroup are the same as the 13-limit commas of 87. Still another subgroup of interest is the <a class="wiki_link" href="/k%2AN%20subgroups">2*29 subgroup</a> 2.3.25.35.55.65.85; on this subgroup 29 tunes the same as 58 and has the same 17-limit commas.<br /> <br /> <!-- ws:start:WikiTextHeadingRule:2:<h1> --><h1 id="toc1"><a name="Intervals"></a><!-- ws:end:WikiTextHeadingRule:2 -->Intervals</h1> <table class="wiki_table"> <tr> <td>Degrees of 29-EDO<br /> </td> <td>Cents value<br /> </td> </tr> <tr> <td>0<br /> </td> <td>0<br /> </td> </tr> <tr> <td>1<br /> </td> <td>41.379<br /> </td> </tr> <tr> <td>2<br /> </td> <td>82.759<br /> </td> </tr> <tr> <td>3<br /> </td> <td>124.138<br /> </td> </tr> <tr> <td>4<br /> </td> <td>165.517<br /> </td> </tr> <tr> <td>5<br /> </td> <td>206.897<br /> </td> </tr> <tr> <td>6<br /> </td> <td>248.276<br /> </td> </tr> <tr> <td>7<br /> </td> <td>289.655<br /> </td> </tr> <tr> <td>8<br /> </td> <td>331.034<br /> </td> </tr> <tr> <td>9<br /> </td> <td>372.414<br /> </td> </tr> <tr> <td>10<br /> </td> <td>413.793<br /> </td> </tr> <tr> <td>11<br /> </td> <td>455.172<br /> </td> </tr> <tr> <td>12<br /> </td> <td>496.552<br /> </td> </tr> <tr> <td>13<br /> </td> <td>537.931<br /> </td> </tr> <tr> <td>14<br /> </td> <td>579.310<br /> </td> </tr> <tr> <td>15<br /> </td> <td>620.690<br /> </td> </tr> <tr> <td>16<br /> </td> <td>662.069<br /> </td> </tr> <tr> <td>17<br /> </td> <td>703.448<br /> </td> </tr> <tr> <td>18<br /> </td> <td>744.828<br /> </td> </tr> <tr> <td>19<br /> </td> <td>786.207<br /> </td> </tr> <tr> <td>20<br /> </td> <td>827.586<br /> </td> </tr> <tr> <td>21<br /> </td> <td>868.966<br /> </td> </tr> <tr> <td>22<br /> </td> <td>910.345<br /> </td> </tr> <tr> <td>23<br /> </td> <td>951.724<br /> </td> </tr> <tr> <td>24<br /> </td> <td>993.103<br /> </td> </tr> <tr> <td>25<br /> </td> <td>1034.483<br /> </td> </tr> <tr> <td>26<br /> </td> <td>1075.862<br /> </td> </tr> <tr> <td>27<br /> </td> <td>1117.241<br /> </td> </tr> <tr> <td>28<br /> </td> <td>1158.621<br /> </td> </tr> </table> <br /> <!-- ws:start:WikiTextHeadingRule:4:<h1> --><h1 id="toc2"><a name="Commas"></a><!-- ws:end:WikiTextHeadingRule:4 -->Commas</h1> 29 EDO tempers out the following commas. (Note: This assumes the val < 29 46 67 81 100 107 |, cent values rounded to 5 digits.)<br /> <table class="wiki_table"> <tr> <th>Comma<br /> </th> <th>Monzo<br /> </th> <th>Value (Cents)<br /> </th> <th>Name 1<br /> </th> <th>Name 2<br /> </th> </tr> <tr> <td style="text-align: center;">16875/16384<br /> </td> <td>| -14 3 4 ><br /> </td> <td style="text-align: right;">51.120<br /> </td> <td style="text-align: center;">Negri Comma<br /> </td> <td style="text-align: center;">Double Augmentation Diesis<br /> </td> </tr> <tr> <td style="text-align: center;">250/243<br /> </td> <td>| 1 -5 3 ><br /> </td> <td style="text-align: right;">49.166<br /> </td> <td style="text-align: center;">Maximal Diesis<br /> </td> <td style="text-align: center;">Porcupine Comma<br /> </td> </tr> <tr> <td style="text-align: center;">32805/32768<br /> </td> <td>| -15 8 1 ><br /> </td> <td style="text-align: right;">1.9537<br /> </td> <td style="text-align: center;">Schisma<br /> </td> <td style="text-align: center;"><br /> </td> </tr> <tr> <td style="text-align: center;">525/512<br /> </td> <td>| -9 1 2 1 ><br /> </td> <td style="text-align: right;">43.408<br /> </td> <td style="text-align: center;">Avicennma<br /> </td> <td style="text-align: center;">Avicenna's Enharmonic Diesis<br /> </td> </tr> <tr> <td style="text-align: center;">49/48<br /> </td> <td>| -4 -1 0 2 ><br /> </td> <td style="text-align: right;">35.697<br /> </td> <td style="text-align: center;">Slendro Diesis<br /> </td> <td style="text-align: center;"><br /> </td> </tr> <tr> <td style="text-align: center;">686/675<br /> </td> <td>| 1 -3 -2 3 ><br /> </td> <td style="text-align: right;">27.985<br /> </td> <td style="text-align: center;">Senga<br /> </td> <td style="text-align: center;"><br /> </td> </tr> <tr> <td style="text-align: center;">64827/64000<br /> </td> <td>| -9 3 -3 4 ><br /> </td> <td style="text-align: right;">22.227<br /> </td> <td style="text-align: center;">Squalentine<br /> </td> <td style="text-align: center;"><br /> </td> </tr> <tr> <td style="text-align: center;">3125/3087<br /> </td> <td>| 0 -2 5 -3 ><br /> </td> <td style="text-align: right;">21.181<br /> </td> <td style="text-align: center;">Gariboh<br /> </td> <td style="text-align: center;"><br /> </td> </tr> <tr> <td style="text-align: center;">50421/50000<br /> </td> <td>| -4 1 -5 5 ><br /> </td> <td style="text-align: right;">14.516<br /> </td> <td style="text-align: center;">Trimyna<br /> </td> <td style="text-align: center;"><br /> </td> </tr> <tr> <td style="text-align: center;">4000/3969<br /> </td> <td>| 5 -4 3 -2 ><br /> </td> <td style="text-align: right;">13.469<br /> </td> <td style="text-align: center;">Octagar<br /> </td> <td style="text-align: center;"><br /> </td> </tr> <tr> <td style="text-align: center;">225/224<br /> </td> <td>| -5 2 2 -1 ><br /> </td> <td style="text-align: right;">7.7115<br /> </td> <td style="text-align: center;">Septimal Kleisma<br /> </td> <td style="text-align: center;">Marvel Comma<br /> </td> </tr> <tr> <td style="text-align: center;">5120/5103<br /> </td> <td>| 10 -6 1 -1 ><br /> </td> <td style="text-align: right;">5.7578<br /> </td> <td style="text-align: center;">Hemifamity<br /> </td> <td style="text-align: center;"><br /> </td> </tr> <tr> <td style="text-align: center;">4994735/4983772<br /> </td> <td>| 25 -14 0 -1 ><br /> </td> <td style="text-align: right;">3.8041<br /> </td> <td style="text-align: center;">Garischisma<br /> </td> <td style="text-align: center;"><br /> </td> </tr> <tr> <td style="text-align: center;">100/99<br /> </td> <td>| 2 -2 2 0 -1 ><br /> </td> <td style="text-align: right;">17.399<br /> </td> <td style="text-align: center;">Ptolemisma<br /> </td> <td style="text-align: center;"><br /> </td> </tr> <tr> <td style="text-align: center;">121/120<br /> </td> <td>| -3 -1 -1 0 2 ><br /> </td> <td style="text-align: right;">14.367<br /> </td> <td style="text-align: center;">Biyatisma<br /> </td> <td style="text-align: center;"><br /> </td> </tr> <tr> <td style="text-align: center;">896/891<br /> </td> <td>| 7 -4 0 1 -1 ><br /> </td> <td style="text-align: right;">9.6880<br /> </td> <td style="text-align: center;">Pentacircle<br /> </td> <td style="text-align: center;"><br /> </td> </tr> <tr> <td style="text-align: center;">441/440<br /> </td> <td>| -3 2 -1 2 -1 ><br /> </td> <td style="text-align: right;">3.9302<br /> </td> <td style="text-align: center;">Werckisma<br /> </td> <td style="text-align: center;"><br /> </td> </tr> <tr> <td style="text-align: center;">4000/3993<br /> </td> <td>| 5 -1 3 0 -3 ><br /> </td> <td style="text-align: right;">3.0323<br /> </td> <td style="text-align: center;">Wizardharry<br /> </td> <td style="text-align: center;"><br /> </td> </tr> <tr> <td style="text-align: center;">9801/9800<br /> </td> <td>| -3 4 -2 -2 2 ><br /> </td> <td style="text-align: right;">0.17665<br /> </td> <td style="text-align: center;">Kalisma<br /> </td> <td style="text-align: center;">Gauss' Comma<br /> </td> </tr> <tr> <td style="text-align: center;">91/90<br /> </td> <td>| -1 -2 -1 1 0 1 ><br /> </td> <td style="text-align: right;">19.130<br /> </td> <td style="text-align: center;">Superleap<br /> </td> <td style="text-align: center;"><br /> </td> </tr> </table> <br /> <!-- ws:start:WikiTextHeadingRule:6:<h1> --><h1 id="toc3"><a name="Music"></a><!-- ws:end:WikiTextHeadingRule:6 -->Music</h1> <a class="wiki_link_ext" href="http://tinyurl.com/45lancy" rel="nofollow">Paint in the Water 29</a> by <a class="wiki_link" href="/Igliashon%20Jones">Igliashon Jones</a></body></html>