229edo: Difference between revisions

Xenllium (talk | contribs)
No edit summary
Tags: Mobile edit Mobile web edit
Expansion: sectioning, prime error table, 19-limit interpretation, rtt tables
Line 1: Line 1:
'''229EDO''' is the [[EDO|equal division of the octave]] into 229 parts of 5.2402 [[cent]]s each. It tempers out 393216/390625 ([[würschmidt comma]]) and 68719476736000/68630377364883 ([[Tricot|tricot comma]]) in the 5-limit; 2401/2400, 3136/3125, and 14348907/14336000 in the 7-limit; 3025/3024, 3388/3375, 8019/8000, and 15488/15435 in the 11-limit, so that it supports the [[Würschmidt family|hemiwürschmidt temperament]].
The '''229 equal divisions of the octave''' ('''229edo'''), or the '''229(-tone) equal temperament''' ('''229tet''', '''229et'''), is the [[EDO|equal division of the octave]] into 229 parts of 5.2402 [[cent]]s each.  


229EDO is the 50th [[prime EDO]].
== Theory ==
While not highly accurate for its size, 229et is the point where a few important temperaments meet, and is distinctly [[consistent]] in the [[11-odd-limit]]. It tempers out 393216/390625 ([[würschmidt comma]]) and {{monzo| 39 -29 3 }} ([[tricot comma]]) in the 5-limit; [[2401/2400]], [[3136/3125]], [[6144/6125]], and [[14348907/14336000]] in the 7-limit; [[3025/3024]], [[3388/3375]], [[8019/8000]], [[14641/14580]] and 15488/15435 in the 11-limit, and using the [[patent val]], [[351/350]], [[2080/2079]], and [[4096/4095]] in the 13-limit, notably supporting [[hemiwürschmidt]], [[newt]], and [[trident]].  


229edo is the 50th [[prime EDO]].
=== Prime harmonics ===
{{Primes in edo|229}}
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
! rowspan="2" | Subgroup
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal 8ve <br>stretch (¢)
! colspan="2" | Tuning error
|-
! [[TE error|Absolute]] (¢)
! [[TE simple badness|Relative]] (%)
|-
| 2.3
| {{monzo| 363 -229 }}
| [{{val| 229 363 }}]
| -0.072
| 0.072
| 1.38
|-
| 2.3.5
| 393216/390625, {{monzo| 39 -29 3 }}
| [{{val| 229 363 532 }}]
| -0.258
| 0.269
| 5.13
|-
| 2.3.5.7
| 2401/2400, 3136/3125, 14348907/14336000
| [{{val| 229 363 532 643 }}]
| -0.247
| 0.233
| 4.46
|-
| 2.3.5.7.11
| 2401/2400, 3025/3024, 3136/3125, 8019/8000
| [{{val| 229 363 532 643 792 }}]
| -0.134
| 0.308
| 5.87
|-
| 2.3.5.7.11.13
| 351/350, 2080/2079, 3025/3024, 3136/3125, 4096/4095
| [{{val| 229 363 532 643 792 847 }}]
| -0.017
| 0.384
| 7.32
|-
| 2.3.5.7.11.13.17
| 351/350, 442/441, 561/560, 715/714, 3136/3125, 4096/4095
| [{{val| 229 363 532 643 792 847 936 }}]
| -0.009
| 0.356
| 6.79
|-
| 2.3.5.7.11.13.17.19
| 286/285, 351/350, 442/441, 476/475, 561/560, 1216/1215, 1729/1728
| [{{val| 229 363 532 643 792 847 936 973 }}]
| -0.043
| 0.344
| 6.57
|}
=== Rank-2 temperaments ===
{| class="wikitable center-all left-5"
|+Table of rank-2 temperaments by generator
! Periods<br>per octave
! Generator<br>(reduced)
! Cents<br>(reduced)
! Associated<br>ratio
! Temperaments
|-
| 1
| 19\229
| 99.56
| 18/17
| [[Quintagar]] / [[quintasandra]] / [[quintasandroid]]
|-
| 1
| 37\229
| 193.87
| 28/25
| [[Didacus]] / [[hemiwürschmidt]]
|-
| 1
| 67\229
| 351.09
| 49/40
| [[Newt]]
|-
| 1
| 74\229
| 387.77
| 5/4
| [[Würschmidt]]
|-
| 1
| 95\229
| 497.82
| 4/3
| [[Gary]]
|-
| 1
| 75\229
| 503.06
| 147/110
| [[Quadrawürschmidt]]
|-
| 1
| 108\229
| 565.94
| 18/13
| [[Tricot]] / [[trident]]
|}


[[Category:Hemiwürschmidt]]
[[Category:Würschmidt]]
[[Category:Equal divisions of the octave]]
[[Category:Equal divisions of the octave]]
[[Category:Prime EDO]]
[[Category:Prime EDO]]
[[Category:Würschmidt]]
[[Category:Hemiwürschmidt]]