229edo: Difference between revisions
No edit summary Tags: Mobile edit Mobile web edit |
Expansion: sectioning, prime error table, 19-limit interpretation, rtt tables |
||
Line 1: | Line 1: | ||
''' | The '''229 equal divisions of the octave''' ('''229edo'''), or the '''229(-tone) equal temperament''' ('''229tet''', '''229et'''), is the [[EDO|equal division of the octave]] into 229 parts of 5.2402 [[cent]]s each. | ||
== Theory == | |||
While not highly accurate for its size, 229et is the point where a few important temperaments meet, and is distinctly [[consistent]] in the [[11-odd-limit]]. It tempers out 393216/390625 ([[würschmidt comma]]) and {{monzo| 39 -29 3 }} ([[tricot comma]]) in the 5-limit; [[2401/2400]], [[3136/3125]], [[6144/6125]], and [[14348907/14336000]] in the 7-limit; [[3025/3024]], [[3388/3375]], [[8019/8000]], [[14641/14580]] and 15488/15435 in the 11-limit, and using the [[patent val]], [[351/350]], [[2080/2079]], and [[4096/4095]] in the 13-limit, notably supporting [[hemiwürschmidt]], [[newt]], and [[trident]]. | |||
229edo is the 50th [[prime EDO]]. | |||
=== Prime harmonics === | |||
{{Primes in edo|229}} | |||
== Regular temperament properties == | |||
{| class="wikitable center-4 center-5 center-6" | |||
! rowspan="2" | Subgroup | |||
! rowspan="2" | [[Comma list]] | |||
! rowspan="2" | [[Mapping]] | |||
! rowspan="2" | Optimal 8ve <br>stretch (¢) | |||
! colspan="2" | Tuning error | |||
|- | |||
! [[TE error|Absolute]] (¢) | |||
! [[TE simple badness|Relative]] (%) | |||
|- | |||
| 2.3 | |||
| {{monzo| 363 -229 }} | |||
| [{{val| 229 363 }}] | |||
| -0.072 | |||
| 0.072 | |||
| 1.38 | |||
|- | |||
| 2.3.5 | |||
| 393216/390625, {{monzo| 39 -29 3 }} | |||
| [{{val| 229 363 532 }}] | |||
| -0.258 | |||
| 0.269 | |||
| 5.13 | |||
|- | |||
| 2.3.5.7 | |||
| 2401/2400, 3136/3125, 14348907/14336000 | |||
| [{{val| 229 363 532 643 }}] | |||
| -0.247 | |||
| 0.233 | |||
| 4.46 | |||
|- | |||
| 2.3.5.7.11 | |||
| 2401/2400, 3025/3024, 3136/3125, 8019/8000 | |||
| [{{val| 229 363 532 643 792 }}] | |||
| -0.134 | |||
| 0.308 | |||
| 5.87 | |||
|- | |||
| 2.3.5.7.11.13 | |||
| 351/350, 2080/2079, 3025/3024, 3136/3125, 4096/4095 | |||
| [{{val| 229 363 532 643 792 847 }}] | |||
| -0.017 | |||
| 0.384 | |||
| 7.32 | |||
|- | |||
| 2.3.5.7.11.13.17 | |||
| 351/350, 442/441, 561/560, 715/714, 3136/3125, 4096/4095 | |||
| [{{val| 229 363 532 643 792 847 936 }}] | |||
| -0.009 | |||
| 0.356 | |||
| 6.79 | |||
|- | |||
| 2.3.5.7.11.13.17.19 | |||
| 286/285, 351/350, 442/441, 476/475, 561/560, 1216/1215, 1729/1728 | |||
| [{{val| 229 363 532 643 792 847 936 973 }}] | |||
| -0.043 | |||
| 0.344 | |||
| 6.57 | |||
|} | |||
=== Rank-2 temperaments === | |||
{| class="wikitable center-all left-5" | |||
|+Table of rank-2 temperaments by generator | |||
! Periods<br>per octave | |||
! Generator<br>(reduced) | |||
! Cents<br>(reduced) | |||
! Associated<br>ratio | |||
! Temperaments | |||
|- | |||
| 1 | |||
| 19\229 | |||
| 99.56 | |||
| 18/17 | |||
| [[Quintagar]] / [[quintasandra]] / [[quintasandroid]] | |||
|- | |||
| 1 | |||
| 37\229 | |||
| 193.87 | |||
| 28/25 | |||
| [[Didacus]] / [[hemiwürschmidt]] | |||
|- | |||
| 1 | |||
| 67\229 | |||
| 351.09 | |||
| 49/40 | |||
| [[Newt]] | |||
|- | |||
| 1 | |||
| 74\229 | |||
| 387.77 | |||
| 5/4 | |||
| [[Würschmidt]] | |||
|- | |||
| 1 | |||
| 95\229 | |||
| 497.82 | |||
| 4/3 | |||
| [[Gary]] | |||
|- | |||
| 1 | |||
| 75\229 | |||
| 503.06 | |||
| 147/110 | |||
| [[Quadrawürschmidt]] | |||
|- | |||
| 1 | |||
| 108\229 | |||
| 565.94 | |||
| 18/13 | |||
| [[Tricot]] / [[trident]] | |||
|} | |||
[[Category:Equal divisions of the octave]] | [[Category:Equal divisions of the octave]] | ||
[[Category:Prime EDO]] | [[Category:Prime EDO]] | ||
[[Category:Würschmidt]] | |||
[[Category:Hemiwürschmidt]] |