359edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>genewardsmith
**Imported revision 556760633 - Original comment: **
Wikispaces>FREEZE
No edit summary
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
=<span style="color: #006138; font-family: 'Times New Roman',Times,serif; font-size: 113%;">359 tone equal temperament</span>=
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2015-08-16 12:35:42 UTC</tt>.<br>
: The original revision id was <tt>556760633</tt>.<br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">=&lt;span style="color: #006138; font-family: 'Times New Roman',Times,serif; font-size: 113%;"&gt;359 tone equal temperament&lt;/span&gt;=  


359-tET or 359-EDO divides the octave in 359 parts of 3.34262 cents each. 359-EDO contains a very close approximation of the pure 3/2 fifth of 701.955 cents; &lt;span style="font-size: 13px; line-height: 1.5;"&gt;with the &lt;/span&gt;**&lt;span style="font-size: 13px; line-height: 1.5;"&gt;210\359&lt;/span&gt;**&lt;span style="font-size: 13px; line-height: 1.5;"&gt; step of &lt;/span&gt;**&lt;span style="font-size: 13px; line-height: 1.5;"&gt;701.94986 cents&lt;/span&gt;**&lt;span style="font-size: 13px; line-height: 1.5;"&gt;. 359-EDO supports a type of exaggered Hornbostel mode, with an approximation of the blown fifth that he described of the pan flutes of some regions of South America; the Pythagorean fifth (701.955 Cents) minus the Pythagorean comma (23.46 Cents) = &lt;/span&gt;**&lt;span style="font-size: 13px; line-height: 1.5;"&gt;678.495 cents,&lt;/span&gt;**&lt;span style="font-size: 13px; line-height: 1.5;"&gt; in 359-EDO this is the step &lt;/span&gt;**&lt;span style="font-size: 13px; line-height: 1.5;"&gt;203\359&lt;/span&gt;**&lt;span style="font-size: 13px; line-height: 1.5;"&gt; of &lt;/span&gt;**&lt;span style="font-size: 13px; line-height: 1.5;"&gt;678.55153 cents.&lt;/span&gt;**
359-tET or 359-EDO divides the octave in 359 parts of 3.34262 cents each. 359-EDO contains a very close approximation of the pure 3/2 fifth of 701.955 cents; <span style="font-size: 13px; line-height: 1.5;">with the </span>'''<span style="font-size: 13px; line-height: 1.5;">210\359</span>'''<span style="font-size: 13px; line-height: 1.5;"> step of </span>'''<span style="font-size: 13px; line-height: 1.5;">701.94986 cents</span>'''<span style="font-size: 13px; line-height: 1.5;">. 359-EDO supports a type of exaggered Hornbostel mode, with an approximation of the blown fifth that he described of the pan flutes of some regions of South America; the Pythagorean fifth (701.955 Cents) minus the Pythagorean comma (23.46 Cents) = </span>'''<span style="font-size: 13px; line-height: 1.5;">678.495 cents,</span>'''<span style="font-size: 13px; line-height: 1.5;"> in 359-EDO this is the step </span>'''<span style="font-size: 13px; line-height: 1.5;">203\359</span>'''<span style="font-size: 13px; line-height: 1.5;"> of </span>'''<span style="font-size: 13px; line-height: 1.5;">678.55153 cents.</span>'''
**Pythagorean diatonic scale: 61 61 27 61 61 61 27**
 
**Exaggered Hornbostel superdiatonic scale: 47 47 47 15 47 47 47 47 15 (fails in the position of Phi and the Square root of Pi [+1\359 step of each one]).**</pre></div>
'''Pythagorean diatonic scale: 61 61 27 61 61 61 27'''
<h4>Original HTML content:</h4>
 
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;359edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="x359 tone equal temperament"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;&lt;span style="color: #006138; font-family: 'Times New Roman',Times,serif; font-size: 113%;"&gt;359 tone equal temperament&lt;/span&gt;&lt;/h1&gt;
'''Exaggered Hornbostel superdiatonic scale: 47 47 47 15 47 47 47 47 15 (fails in the position of Phi and the Square root of Pi [+1\359 step of each one]).'''      [[Category:edo]]
&lt;br /&gt;
[[Category:nano]]
359-tET or 359-EDO divides the octave in 359 parts of 3.34262 cents each. 359-EDO contains a very close approximation of the pure 3/2 fifth of 701.955 cents; &lt;span style="font-size: 13px; line-height: 1.5;"&gt;with the &lt;/span&gt;&lt;strong&gt;&lt;span style="font-size: 13px; line-height: 1.5;"&gt;210\359&lt;/span&gt;&lt;/strong&gt;&lt;span style="font-size: 13px; line-height: 1.5;"&gt; step of &lt;/span&gt;&lt;strong&gt;&lt;span style="font-size: 13px; line-height: 1.5;"&gt;701.94986 cents&lt;/span&gt;&lt;/strong&gt;&lt;span style="font-size: 13px; line-height: 1.5;"&gt;. 359-EDO supports a type of exaggered Hornbostel mode, with an approximation of the blown fifth that he described of the pan flutes of some regions of South America; the Pythagorean fifth (701.955 Cents) minus the Pythagorean comma (23.46 Cents) = &lt;/span&gt;&lt;strong&gt;&lt;span style="font-size: 13px; line-height: 1.5;"&gt;678.495 cents,&lt;/span&gt;&lt;/strong&gt;&lt;span style="font-size: 13px; line-height: 1.5;"&gt; in 359-EDO this is the step &lt;/span&gt;&lt;strong&gt;&lt;span style="font-size: 13px; line-height: 1.5;"&gt;203\359&lt;/span&gt;&lt;/strong&gt;&lt;span style="font-size: 13px; line-height: 1.5;"&gt; of &lt;/span&gt;&lt;strong&gt;&lt;span style="font-size: 13px; line-height: 1.5;"&gt;678.55153 cents.&lt;/span&gt;&lt;/strong&gt;&lt;br /&gt;
[[Category:theory]]
&lt;strong&gt;Pythagorean diatonic scale: 61 61 27 61 61 61 27&lt;/strong&gt;&lt;br /&gt;
&lt;strong&gt;Exaggered Hornbostel superdiatonic scale: 47 47 47 15 47 47 47 47 15 (fails in the position of Phi and the Square root of Pi [+1\359 step of each one]).&lt;/strong&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>

Revision as of 00:00, 17 July 2018

359 tone equal temperament

359-tET or 359-EDO divides the octave in 359 parts of 3.34262 cents each. 359-EDO contains a very close approximation of the pure 3/2 fifth of 701.955 cents; with the 210\359 step of 701.94986 cents. 359-EDO supports a type of exaggered Hornbostel mode, with an approximation of the blown fifth that he described of the pan flutes of some regions of South America; the Pythagorean fifth (701.955 Cents) minus the Pythagorean comma (23.46 Cents) = 678.495 cents, in 359-EDO this is the step 203\359 of 678.55153 cents.

Pythagorean diatonic scale: 61 61 27 61 61 61 27

Exaggered Hornbostel superdiatonic scale: 47 47 47 15 47 47 47 47 15 (fails in the position of Phi and the Square root of Pi [+1\359 step of each one]).