|
|
Line 1: |
Line 1: |
| <h2>IMPORTED REVISION FROM WIKISPACES</h2>
| | =<span style="color: #006138; font-family: 'Times New Roman',Times,serif; font-size: 113%;">359 tone equal temperament</span>= |
| This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| |
| : This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2015-08-16 12:35:42 UTC</tt>.<br>
| |
| : The original revision id was <tt>556760633</tt>.<br>
| |
| : The revision comment was: <tt></tt><br>
| |
| The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
| |
| <h4>Original Wikitext content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">=<span style="color: #006138; font-family: 'Times New Roman',Times,serif; font-size: 113%;">359 tone equal temperament</span>=
| |
|
| |
|
| 359-tET or 359-EDO divides the octave in 359 parts of 3.34262 cents each. 359-EDO contains a very close approximation of the pure 3/2 fifth of 701.955 cents; <span style="font-size: 13px; line-height: 1.5;">with the </span>**<span style="font-size: 13px; line-height: 1.5;">210\359</span>**<span style="font-size: 13px; line-height: 1.5;"> step of </span>**<span style="font-size: 13px; line-height: 1.5;">701.94986 cents</span>**<span style="font-size: 13px; line-height: 1.5;">. 359-EDO supports a type of exaggered Hornbostel mode, with an approximation of the blown fifth that he described of the pan flutes of some regions of South America; the Pythagorean fifth (701.955 Cents) minus the Pythagorean comma (23.46 Cents) = </span>**<span style="font-size: 13px; line-height: 1.5;">678.495 cents,</span>**<span style="font-size: 13px; line-height: 1.5;"> in 359-EDO this is the step </span>**<span style="font-size: 13px; line-height: 1.5;">203\359</span>**<span style="font-size: 13px; line-height: 1.5;"> of </span>**<span style="font-size: 13px; line-height: 1.5;">678.55153 cents.</span>** | | 359-tET or 359-EDO divides the octave in 359 parts of 3.34262 cents each. 359-EDO contains a very close approximation of the pure 3/2 fifth of 701.955 cents; <span style="font-size: 13px; line-height: 1.5;">with the </span>'''<span style="font-size: 13px; line-height: 1.5;">210\359</span>'''<span style="font-size: 13px; line-height: 1.5;"> step of </span>'''<span style="font-size: 13px; line-height: 1.5;">701.94986 cents</span>'''<span style="font-size: 13px; line-height: 1.5;">. 359-EDO supports a type of exaggered Hornbostel mode, with an approximation of the blown fifth that he described of the pan flutes of some regions of South America; the Pythagorean fifth (701.955 Cents) minus the Pythagorean comma (23.46 Cents) = </span>'''<span style="font-size: 13px; line-height: 1.5;">678.495 cents,</span>'''<span style="font-size: 13px; line-height: 1.5;"> in 359-EDO this is the step </span>'''<span style="font-size: 13px; line-height: 1.5;">203\359</span>'''<span style="font-size: 13px; line-height: 1.5;"> of </span>'''<span style="font-size: 13px; line-height: 1.5;">678.55153 cents.</span>''' |
| **Pythagorean diatonic scale: 61 61 27 61 61 61 27**
| | |
| **Exaggered Hornbostel superdiatonic scale: 47 47 47 15 47 47 47 47 15 (fails in the position of Phi and the Square root of Pi [+1\359 step of each one]).**</pre></div>
| | '''Pythagorean diatonic scale: 61 61 27 61 61 61 27''' |
| <h4>Original HTML content:</h4>
| | |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>359edo</title></head><body><!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="x359 tone equal temperament"></a><!-- ws:end:WikiTextHeadingRule:0 --><span style="color: #006138; font-family: 'Times New Roman',Times,serif; font-size: 113%;">359 tone equal temperament</span></h1>
| | '''Exaggered Hornbostel superdiatonic scale: 47 47 47 15 47 47 47 47 15 (fails in the position of Phi and the Square root of Pi [+1\359 step of each one]).''' [[Category:edo]] |
| <br />
| | [[Category:nano]] |
| 359-tET or 359-EDO divides the octave in 359 parts of 3.34262 cents each. 359-EDO contains a very close approximation of the pure 3/2 fifth of 701.955 cents; <span style="font-size: 13px; line-height: 1.5;">with the </span><strong><span style="font-size: 13px; line-height: 1.5;">210\359</span></strong><span style="font-size: 13px; line-height: 1.5;"> step of </span><strong><span style="font-size: 13px; line-height: 1.5;">701.94986 cents</span></strong><span style="font-size: 13px; line-height: 1.5;">. 359-EDO supports a type of exaggered Hornbostel mode, with an approximation of the blown fifth that he described of the pan flutes of some regions of South America; the Pythagorean fifth (701.955 Cents) minus the Pythagorean comma (23.46 Cents) = </span><strong><span style="font-size: 13px; line-height: 1.5;">678.495 cents,</span></strong><span style="font-size: 13px; line-height: 1.5;"> in 359-EDO this is the step </span><strong><span style="font-size: 13px; line-height: 1.5;">203\359</span></strong><span style="font-size: 13px; line-height: 1.5;"> of </span><strong><span style="font-size: 13px; line-height: 1.5;">678.55153 cents.</span></strong><br />
| | [[Category:theory]] |
| <strong>Pythagorean diatonic scale: 61 61 27 61 61 61 27</strong><br />
| |
| <strong>Exaggered Hornbostel superdiatonic scale: 47 47 47 15 47 47 47 47 15 (fails in the position of Phi and the Square root of Pi [+1\359 step of each one]).</strong></body></html></pre></div>
| |
359 tone equal temperament
359-tET or 359-EDO divides the octave in 359 parts of 3.34262 cents each. 359-EDO contains a very close approximation of the pure 3/2 fifth of 701.955 cents; with the 210\359 step of 701.94986 cents. 359-EDO supports a type of exaggered Hornbostel mode, with an approximation of the blown fifth that he described of the pan flutes of some regions of South America; the Pythagorean fifth (701.955 Cents) minus the Pythagorean comma (23.46 Cents) = 678.495 cents, in 359-EDO this is the step 203\359 of 678.55153 cents.
Pythagorean diatonic scale: 61 61 27 61 61 61 27
Exaggered Hornbostel superdiatonic scale: 47 47 47 15 47 47 47 47 15 (fails in the position of Phi and the Square root of Pi [+1\359 step of each one]).