|
|
Line 6: |
Line 6: |
| | ja = | | | ja = |
| }} | | }} |
| = Theory = | | == Theory == |
| <b>72-tone equal temperament</b>, or <b>72-edo</b>, divides the octave into 72 steps or ''moria''. This produces a twelfth-tone tuning, with the whole tone measuring 200 cents, the same as in 12-tone equal temperament. 72-tone is also a superset of [[24edo|24-tone equal temperament]], a common and standard tuning of [[Arabic,_Turkish,_Persian|Arabic]] music, and has itself been used to tune Turkish music.
| | '''72-tone equal temperament''', or '''72-edo''', divides the octave into 72 steps or ''moria''. This produces a twelfth-tone tuning, with the whole tone measuring 200 cents, the same as in 12-tone equal temperament. 72-tone is also a superset of [[24edo|24-tone equal temperament]], a common and standard tuning of [[Arabic,_Turkish,_Persian|Arabic]] music, and has itself been used to tune Turkish music. |
|
| |
|
| Composers that used 72-tone include Alois Hába, Ivan Wyschnegradsky, Julián Carillo (who is better associated with [[96edo|96-edo]]), Iannis Xenakis, Ezra Sims, James Tenney and the jazz musician Joe Maneri. | | Composers that used 72-tone include Alois Hába, Ivan Wyschnegradsky, Julián Carillo (who is better associated with [[96edo]]), Iannis Xenakis, Ezra Sims, James Tenney and the jazz musician Joe Maneri. |
|
| |
|
| 72-tone equal temperament approximates [[11-limit|11-limit just intonation]] exceptionally well, is consistent in the [[17-limit|17-limit]], and is the ninth [[The_Riemann_Zeta_Function_and_Tuning#Zeta EDO lists|Zeta integral tuning]]. The octave, fifth and fourth are the same size as they would be in 12-tone, 72, 42 and 30 steps respectively, but the major third (5/4) measures 23 steps, not 24, and other 5-limit major intervals are one step flat of 12-et while minor ones are one step sharp. The septimal minor seventh (7/4) is 58 steps, while the undecimal semiaugmented fourth (11/8) is 33. | | 72-tone equal temperament approximates [[11-limit]] [[just intonation]] exceptionally well, is consistent in the [[17-limit]], and is the ninth [[The_Riemann_Zeta_Function_and_Tuning #Zeta EDO lists|Zeta integral tuning]]. The octave, fifth and fourth are the same size as they would be in 12-tone, 72, 42 and 30 steps respectively, but the major third ([[5/4]]) measures 23 steps, not 24, and other [[5-limit]] major intervals are one step flat of 12-et while minor ones are one step sharp. The septimal minor seventh ([[7/4]]) is 58 steps, while the undecimal semiaugmented fourth ([[11/8]]) is 33. |
|
| |
|
| 72 is an excellent tuning for [[Gamelismic_clan|miracle temperament]], especially the 11-limit version, and the related rank three temperament [[Marvel_family#Prodigy|prodigy]], and is a good tuning for other temperaments and scales, including wizard, harry, catakleismic, compton, unidec and tritikleismic. | | 72 is an excellent tuning for [[Gamelismic_clan #Miracle|miracle temperament]], especially the 11-limit version, and the related rank three temperament [[Marvel_family #Prodigy|prodigy]], and is a good tuning for other temperaments and scales, including [[wizard]], [[harry]], [[catakleismic]], [[compton]], [[unidec]] and [[tritikleismic]]. |
|
| |
|
| =Intervals= | | == Intervals == |
| | | {| class="wikitable center-all right-2 left-3" |
| {| class="wikitable" | |
| |- | | |- |
| | | degrees
| | ! Degrees |
| | | cents value
| | ! Cents |
| | | approximate ratios (17-limit)
| | ! Approximate Ratios (17-limit) |
| | colspan="3" style="text-align:center;" | [[Ups_and_Downs_Notation|ups and downs]] [[Ups_and_Downs_Notation|notation]]
| | ! colspan="3" | [[Ups and Downs Notation]] |
| |- | | |- |
| | 0 | | | 0 |
| |0.000 | | | 0.000 |
| | | 1/1
| | | 1/1 |
| | style="text-align:center;" | P1
| | | P1 |
| | style="text-align:center;" | perfect unison
| | | perfect unison |
| | style="text-align:center;" | D
| | | D |
| |- | | |- |
| | | 1
| | | 1 |
| | | 16.667
| | | 16.667 |
| | | 81/80
| | | 81/80 |
| | style="text-align:center;" | ^1
| | | ^1 |
| | style="text-align:center;" | up unison
| | | up unison |
| | style="text-align:center;" | ^D
| | | ^D |
| |- | | |- |
| | | 2
| | | 2 |
| | | 33.333
| | | 33.333 |
| | | 45/44
| | | 45/44 |
| | style="text-align:center;" | ^^
| | | ^^ |
| | style="text-align:center;" | double-up unison
| | | double-up unison |
| | style="text-align:center;" | ^^D
| | | ^^D |
| |- | | |- |
| | | 3
| | | 3 |
| | | 50
| | | 50.000 |
| | | 33/32
| | | 33/32 |
| | style="text-align:center;" | ^<span style="font-size: 90%; vertical-align: super;">3</span>1, v<span style="font-size: 90%; vertical-align: super;">3</span>m2
| | | ^<sup>3</sup>1, <br>v<sup>3</sup>m2 |
| | style="text-align:center;" | triple-up unison,
| | | triple-up unison,<br>triple-down minor 2nd |
| | | | ^<sup>3</sup>D, <br>v<sup>3</sup>Eb |
| triple-down minor 2nd | |
| | style="text-align:center;" | ^<span style="font-size: 90%; vertical-align: super;">3</span>D, v<span style="font-size: 90%; vertical-align: super;">3</span>Eb
| |
| |- | | |- |
| | | 4
| | | 4 |
| | | 66.667
| | | 66.667 |
| | | 25/24
| | | 25/24 |
| | style="text-align:center;" | vvm2
| | | vvm2 |
| | style="text-align:center;" | double-downminor 2nd
| | | double-downminor 2nd |
| | style="text-align:center;" | vvEb
| | | vvEb |
| |- | | |- |
| | | 5
| | | 5 |
| | | 83.333
| | | 83.333 |
| | | 21/20
| | | 21/20 |
| | style="text-align:center;" | vm2
| | | vm2 |
| | style="text-align:center;" | downminor 2nd
| | | downminor 2nd |
| | style="text-align:center;" | vEb
| | | vEb |
| |- | | |- |
| | | 6
| | | 6 |
| | | 100
| | | 100.000 |
| | | 35/33, 17/16, 18/17
| | | 35/33, 17/16, 18/17 |
| | style="text-align:center;" | m2
| | | m2 |
| | style="text-align:center;" | minor 2nd
| | | minor 2nd |
| | style="text-align:center;" | Eb
| | | Eb |
| |- | | |- |
| | | 7
| | | 7 |
| | | 116.667
| | | 116.667 |
| | | 15/14, 16/15
| | | 15/14, 16/15 |
| | style="text-align:center;" | ^m2
| | | ^m2 |
| | style="text-align:center;" | upminor 2nd
| | | upminor 2nd |
| | style="text-align:center;" | ^Eb
| | | ^Eb |
| |- | | |- |
| | | 8
| | | 8 |
| | | 133.333
| | | 133.333 |
| | | 27/25, 13/12, 14/13
| | | 27/25, 13/12, 14/13 |
| | style="text-align:center;" | v~2
| | | v~2 |
| | style="text-align:center;" | downmid 2nd
| | | downmid 2nd |
| | style="text-align:center;" | ^^Eb
| | | ^^Eb |
| |- | | |- |
| | | 9
| | | 9 |
| | | 150
| | | 150.000 |
| | | 12/11
| | | 12/11 |
| | style="text-align:center;" | ~2
| | | ~2 |
| | style="text-align:center;" | mid 2nd
| | | mid 2nd |
| | style="text-align:center;" | v<span style="font-size: 90%; vertical-align: super;">3</span>E
| | | v<sup>3</sup>E |
| |- | | |- |
| | | 10
| | | 10 |
| | | 166.667
| | | 166.667 |
| | | 11/10
| | | 11/10 |
| | style="text-align:center;" | ^~2
| | | ^~2 |
| | style="text-align:center;" | upmid 2nd
| | | upmid 2nd |
| | style="text-align:center;" | vvE
| | | vvE |
| |- | | |- |
| | | 11
| | | 11 |
| | | 183.333
| | | 183.333 |
| | | 10/9
| | | 10/9 |
| | style="text-align:center;" | vM2
| | | vM2 |
| | style="text-align:center;" | downmajor 2nd
| | | downmajor 2nd |
| | style="text-align:center;" | vE
| | | vE |
| |- | | |- |
| | | 12
| | | 12 |
| | | 200
| | | 200.000 |
| | | 9/8
| | | 9/8 |
| | style="text-align:center;" | M2
| | | M2 |
| | style="text-align:center;" | major 2nd
| | | major 2nd |
| | style="text-align:center;" | E
| | | E |
| |- | | |- |
| | | 13
| | | 13 |
| | | 216.667
| | | 216.667 |
| | | 25/22, 17/15
| | | 25/22, 17/15 |
| | style="text-align:center;" | ^M2
| | | ^M2 |
| | style="text-align:center;" | upmajor 2nd
| | | upmajor 2nd |
| | style="text-align:center;" | ^E
| | | ^E |
| |- | | |- |
| | | 14
| | | 14 |
| | | 233.333
| | | 233.333 |
| | | 8/7
| | | 8/7 |
| | style="text-align:center;" | ^^M2
| | | ^^M2 |
| | style="text-align:center;" | double-upmajor 2nd
| | | double-upmajor 2nd |
| | style="text-align:center;" | ^^E
| | | ^^E |
| |- | | |- |
| | | 15
| | | 15 |
| | | 250
| | | 250.000 |
| | | 81/70, 15/13
| | | 81/70, 15/13 |
| | style="text-align:center;" | ^<span style="font-size: 90%; vertical-align: super;">3</span>M2, v<span style="font-size: 90%; vertical-align: super;">3</span>m3
| | | ^<sup>3</sup>M2, <br>v<sup>3</sup>m3 |
| | style="text-align:center;" | triple-up major 2nd,
| | | triple-up major 2nd,<br>triple-down minor 3rd |
| | | | ^<sup>3</sup>E, <br>v<sup>3</sup>F |
| triple-down minor 3rd | |
| | style="text-align:center;" | ^<span style="font-size: 90%; vertical-align: super;">3</span>E, v<span style="font-size: 90%; vertical-align: super;">3</span>F
| |
| |- | | |- |
| | | 16
| | | 16 |
| | | 266.667
| | | 266.667 |
| | | 7/6
| | | 7/6 |
| | style="text-align:center;" | vvm3
| | | vvm3 |
| | style="text-align:center;" | double-downminor 3rd
| | | double-downminor 3rd |
| | style="text-align:center;" | vvF
| | | vvF |
| |- | | |- |
| | | 17
| | | 17 |
| | | 283.333
| | | 283.333 |
| | | 33/28, 13/11, 20/17
| | | 33/28, 13/11, 20/17 |
| | style="text-align:center;" | vm3
| | | vm3 |
| | style="text-align:center;" | downminor 3rd
| | | downminor 3rd |
| | style="text-align:center;" | vF
| | | vF |
| |- | | |- |
| | | 18
| | | 18 |
| | | 300
| | | 300.000 |
| | | 25/21
| | | 25/21 |
| | style="text-align:center;" | m3
| | | m3 |
| | style="text-align:center;" | minor 3rd
| | | minor 3rd |
| | style="text-align:center;" | F
| | | F |
| |- | | |- |
| | | 19
| | | 19 |
| | | 316.667
| | | 316.667 |
| | | 6/5
| | | 6/5 |
| | style="text-align:center;" | ^m3
| | | ^m3 |
| | style="text-align:center;" | upminor 3rd
| | | upminor 3rd |
| | style="text-align:center;" | ^F
| | | ^F |
| |- | | |- |
| | | 20
| | | 20 |
| | | 333.333
| | | 333.333 |
| | | 40/33, 17/14
| | | 40/33, 17/14 |
| | style="text-align:center;" | v~3
| | | v~3 |
| | style="text-align:center;" | downmid 3rd
| | | downmid 3rd |
| | style="text-align:center;" | ^^F
| | | ^^F |
| |- | | |- |
| | | 21
| | | 21 |
| | | 350
| | | 350.000 |
| | | 11/9
| | | 11/9 |
| | style="text-align:center;" | ~3
| | | ~3 |
| | style="text-align:center;" | mid 3rd
| | | mid 3rd |
| | style="text-align:center;" | ^<span style="font-size: 90%; vertical-align: super;">3</span>F
| | | ^<sup>3</sup>F |
| |- | | |- |
| | | 22
| | | 22 |
| | | 366.667
| | | 366.667 |
| | | 99/80, 16/13, 21/17
| | | 99/80, 16/13, 21/17 |
| | style="text-align:center;" | ^~3
| | | ^~3 |
| | style="text-align:center;" | upmid 3rd
| | | upmid 3rd |
| | style="text-align:center;" | vvF#
| | | vvF# |
| |- | | |- |
| | | 23
| | | 23 |
| | | 383.333
| | | 383.333 |
| | | 5/4
| | | 5/4 |
| | style="text-align:center;" | vM3
| | | vM3 |
| | style="text-align:center;" | downmajor 3rd
| | | downmajor 3rd |
| | style="text-align:center;" | vF#
| | | vF# |
| |- | | |- |
| | | 24
| | | 24 |
| | | 400
| | | 400.000 |
| | | 44/35
| | | 44/35 |
| | style="text-align:center;" | M3
| | | M3 |
| | style="text-align:center;" | major 3rd
| | | major 3rd |
| | style="text-align:center;" | F#
| | | F# |
| |- | | |- |
| | | 25
| | | 25 |
| | | 416.667
| | | 416.667 |
| | | 14/11
| | | 14/11 |
| | style="text-align:center;" | ^M3
| | | ^M3 |
| | style="text-align:center;" | upmajor 3rd
| | | upmajor 3rd |
| | style="text-align:center;" | ^F#
| | | ^F# |
| |- | | |- |
| | | 26
| | | 26 |
| | | 433.333
| | | 433.333 |
| | | 9/7
| | | 9/7 |
| | style="text-align:center;" | ^^M3
| | | ^^M3 |
| | style="text-align:center;" | double-upmajor 3rd
| | | double-upmajor 3rd |
| | style="text-align:center;" | ^^F#
| | | ^^F# |
| |- | | |- |
| | | 27
| | | 27 |
| | | 450
| | | 450.000 |
| | | 35/27, 13/10
| | | 35/27, 13/10 |
| | style="text-align:center;" | ^<span style="font-size: 90%; vertical-align: super;">3</span>M3, v<span style="font-size: 90%; vertical-align: super;">3</span>4
| | | ^<sup>3</sup>M3, <br>v<sup>3</sup>4 |
| | style="text-align:center;" | triple-up major 3rd,
| | | triple-up major 3rd,<br>triple-down 4th |
| | | | ^<sup>3</sup>F#, <br>v<sup>3</sup>G |
| triple-down 4th | |
| | style="text-align:center;" | ^<span style="font-size: 90%; vertical-align: super;">3</span>F#, v<span style="font-size: 90%; vertical-align: super;">3</span>G
| |
| |- | | |- |
| | | 28
| | | 28 |
| | | 466.667
| | | 466.667 |
| | | 21/16, 17/13
| | | 21/16, 17/13 |
| | style="text-align:center;" | vv4
| | | vv4 |
| | style="text-align:center;" | double-down 4th
| | | double-down 4th |
| | style="text-align:center;" | vvG
| | | vvG |
| |- | | |- |
| | | 29
| | | 29 |
| | | 483.333
| | | 483.333 |
| | | 33/25
| | | 33/25 |
| | style="text-align:center;" | v4
| | | v4 |
| | style="text-align:center;" | down 4th
| | | down 4th |
| | style="text-align:center;" | vG
| | | vG |
| |- | | |- |
| | | 30
| | | 30 |
| | | 500
| | | 500.000 |
| | | 4/3
| | | 4/3 |
| | style="text-align:center;" | P4
| | | P4 |
| | style="text-align:center;" | perfect 4th
| | | perfect 4th |
| | style="text-align:center;" | G
| | | G |
| |- | | |- |
| | | 31
| | | 31 |
| | | 516.667
| | | 516.667 |
| | | 27/20
| | | 27/20 |
| | style="text-align:center;" | ^4
| | | ^4 |
| | style="text-align:center;" | up 4th
| | | up 4th |
| | style="text-align:center;" | ^G
| | | ^G |
| |- | | |- |
| | | 32
| | | 32 |
| | | 533.333
| | | 533.333 |
| | | 15/11
| | | 15/11 |
| | style="text-align:center;" | v~4
| | | v~4 |
| | style="text-align:center;" | downmid 4th
| | | downmid 4th |
| | style="text-align:center;" | ^^G
| | | ^^G |
| |- | | |- |
| | | 33
| | | 33 |
| | | 550
| | | 550.000 |
| | | 11/8
| | | 11/8 |
| | style="text-align:center;" | ~4
| | | ~4 |
| | style="text-align:center;" | mid 4th
| | | mid 4th |
| | style="text-align:center;" | ^<span style="font-size: 90%; vertical-align: super;">3</span>G
| | | ^<sup>3</sup>G |
| |- | | |- |
| | | 34
| | | 34 |
| | | 566.667
| | | 566.667 |
| | | 25/18, 18/13
| | | 25/18, 18/13 |
| | style="text-align:center;" | ^~4
| | | ^~4 |
| | style="text-align:center;" | upmid 4th
| | | upmid 4th |
| | style="text-align:center;" | vvG#
| | | vvG# |
| |- | | |- |
| | | 35
| | | 35 |
| | | 583.333
| | | 583.333 |
| | | 7/5
| | | 7/5 |
| | style="text-align:center;" | vA4, vd5
| | | vA4, vd5 |
| | style="text-align:center;" | downaug 4th, updim 5th
| | | downaug 4th, updim 5th |
| | style="text-align:center;" | vG#, vAb
| | | vG#, vAb |
| |- | | |- |
| | | 36
| | | 36 |
| | | 600
| | | 600.000 |
| | | 99/70, 17/12
| | | 99/70, 17/12 |
| | style="text-align:center;" | A4, d5
| | | A4, d5 |
| | style="text-align:center;" | aug 4th, dim 5th
| | | aug 4th, dim 5th |
| | style="text-align:center;" | G#, Ab
| | | G#, Ab |
| |- | | |- |
| | | 37
| | | 37 |
| | | 616.667
| | | 616.667 |
| | | 10/7
| | | 10/7 |
| | style="text-align:center;" | ^A4, ^d5
| | | ^A4, ^d5 |
| | style="text-align:center;" | upaug 4th, downdim 5th
| | | upaug 4th, downdim 5th |
| | style="text-align:center;" | ^G#, ^Ab
| | | ^G#, ^Ab |
| |- | | |- |
| | | 38
| | | 38 |
| | | 633.333
| | | 633.333 |
| | | 36/25, 13/9
| | | 36/25, 13/9 |
| | style="text-align:center;" | v~5
| | | v~5 |
| | style="text-align:center;" | downmid 5th
| | | downmid 5th |
| | style="text-align:center;" | ^^Ab
| | | ^^Ab |
| |- | | |- |
| | | 39
| | | 39 |
| | | 650
| | | 650.000 |
| | | 16/11
| | | 16/11 |
| | style="text-align:center;" | ~5
| | | ~5 |
| | style="text-align:center;" | mid 5th
| | | mid 5th |
| | style="text-align:center;" | v<span style="font-size: 90%; vertical-align: super;">3</span>A
| | | v<sup>3</sup>A |
| |- | | |- |
| | | 40
| | | 40 |
| | | 666.667
| | | 666.667 |
| | | 22/15
| | | 22/15 |
| | style="text-align:center;" | ^~5
| | | ^~5 |
| | style="text-align:center;" | upmid 5th
| | | upmid 5th |
| | style="text-align:center;" | vvA
| | | vvA |
| |- | | |- |
| | | 41
| | | 41 |
| | | 683.333
| | | 683.333 |
| | | 40/27
| | | 40/27 |
| | style="text-align:center;" | v5
| | | v5 |
| | style="text-align:center;" | down 5th
| | | down 5th |
| | style="text-align:center;" | vA
| | | vA |
| |- | | |- |
| | | 42
| | | 42 |
| | | 700
| | | 700.000 |
| | | 3/2
| | | 3/2 |
| | style="text-align:center;" | P5
| | | P5 |
| | style="text-align:center;" | perfect 5th
| | | perfect 5th |
| | style="text-align:center;" | A
| | | A |
| |- | | |- |
| | | 43
| | | 43 |
| | | 716.667
| | | 716.667 |
| | | 50/33
| | | 50/33 |
| | style="text-align:center;" | ^5
| | | ^5 |
| | style="text-align:center;" | up 5th
| | | up 5th |
| | style="text-align:center;" | ^A
| | | ^A |
| |- | | |- |
| | | 44
| | | 44 |
| | | 733.333
| | | 733.333 |
| | | 32/21
| | | 32/21 |
| | style="text-align:center;" | ^^5
| | | ^^5 |
| | style="text-align:center;" | double-up 5th
| | | double-up 5th |
| | style="text-align:center;" | ^^A
| | | ^^A |
| |- | | |- |
| | | 45
| | | 45 |
| | | 750
| | | 750.000 |
| | | 54/35, 17/11
| | | 54/35, 17/11 |
| | style="text-align:center;" | ^<span style="font-size: 90%; vertical-align: super;">3</span>5, v<span style="font-size: 90%; vertical-align: super;">3</span>m6
| | | ^<sup>3</sup>5, <br>v<sup>3</sup>m6 |
| | style="text-align:center;" | triple-up 5th,
| | | triple-up 5th,<br>triple-down minor 6th |
| | | | ^<sup>3</sup>A, <br>v<sup>3</sup>Bb |
| triple-down minor 6th | |
| | style="text-align:center;" | ^<span style="font-size: 90%; vertical-align: super;">3</span>A, v<span style="font-size: 90%; vertical-align: super;">3</span>Bb
| |
| |- | | |- |
| | | 46
| | | 46 |
| | | 766.667
| | | 766.667 |
| | | 14/9
| | | 14/9 |
| | style="text-align:center;" | vvm6
| | | vvm6 |
| | style="text-align:center;" | double-downminor 6th
| | | double-downminor 6th |
| | style="text-align:center;" | vvBb
| | | vvBb |
| |- | | |- |
| | | 47
| | | 47 |
| | | 783.333
| | | 783.333 |
| | | 11/7
| | | 11/7 |
| | style="text-align:center;" | vm6
| | | vm6 |
| | style="text-align:center;" | downminor 6th
| | | downminor 6th |
| | style="text-align:center;" | vBb
| | | vBb |
| |- | | |- |
| | | 48
| | | 48 |
| | | 800
| | | 800.000 |
| | | 35/22
| | | 35/22 |
| | style="text-align:center;" | m6
| | | m6 |
| | style="text-align:center;" | minor 6th
| | | minor 6th |
| | style="text-align:center;" | Bb
| | | Bb |
| |- | | |- |
| | | 49
| | | 49 |
| | | 816.667
| | | 816.667 |
| | | 8/5
| | | 8/5 |
| | style="text-align:center;" | ^m6
| | | ^m6 |
| | style="text-align:center;" | upminor 6th
| | | upminor 6th |
| | style="text-align:center;" | ^Bb
| | | ^Bb |
| |- | | |- |
| | | 50
| | | 50 |
| | | 833.333
| | | 833.333 |
| | | 81/50, 13/8
| | | 81/50, 13/8 |
| | style="text-align:center;" | v~6
| | | v~6 |
| | style="text-align:center;" | downmid 6th
| | | downmid 6th |
| | style="text-align:center;" | ^^Bb
| | | ^^Bb |
| |- | | |- |
| | | 51
| | | 51 |
| | | 850
| | | 850.000 |
| | | 18/11
| | | 18/11 |
| | style="text-align:center;" | ~6
| | | ~6 |
| | style="text-align:center;" | mid 6th
| | | mid 6th |
| | style="text-align:center;" | v<span style="font-size: 90%; vertical-align: super;">3</span>B
| | | v<sup>3</sup>B |
| |- | | |- |
| | | 52
| | | 52 |
| | | 866.667
| | | 866.667 |
| | | 33/20, 28/17
| | | 33/20, 28/17 |
| | style="text-align:center;" | ^~6
| | | ^~6 |
| | style="text-align:center;" | upmid 6th
| | | upmid 6th |
| | style="text-align:center;" | vvB
| | | vvB |
| |- | | |- |
| | | 53
| | | 53 |
| | | 883.333
| | | 883.333 |
| | | 5/3
| | | 5/3 |
| | style="text-align:center;" | vM6
| | | vM6 |
| | style="text-align:center;" | downmajor 6th
| | | downmajor 6th |
| | style="text-align:center;" | vB
| | | vB |
| |- | | |- |
| | | 54
| | | 54 |
| | | 900
| | | 900.000 |
| | | 27/16
| | | 27/16 |
| | style="text-align:center;" | M6
| | | M6 |
| | style="text-align:center;" | major 6th
| | | major 6th |
| | style="text-align:center;" | B
| | | B |
| |- | | |- |
| | | 55
| | | 55 |
| | | 916.667
| | | 916.667 |
| | | 56/33, 17/10
| | | 56/33, 17/10 |
| | style="text-align:center;" | ^M6
| | | ^M6 |
| | style="text-align:center;" | upmajor 6th
| | | upmajor 6th |
| | style="text-align:center;" | ^B
| | | ^B |
| |- | | |- |
| | | 56
| | | 56 |
| | | 933.333
| | | 933.333 |
| | | 12/7
| | | 12/7 |
| | style="text-align:center;" | ^^M6
| | | ^^M6 |
| | style="text-align:center;" | double-upmajor 6th
| | | double-upmajor 6th |
| | style="text-align:center;" | ^^B
| | | ^^B |
| |- | | |- |
| | | 57
| | | 57 |
| | | 950
| | | 950.000 |
| | | 121/70
| | | 121/70 |
| | style="text-align:center;" | ^<span style="font-size: 90%; vertical-align: super;">3</span>M6, v<span style="font-size: 90%; vertical-align: super;">3</span>m7
| | | ^<sup>3</sup>M6, <br>v<sup>3</sup>m7 |
| | style="text-align:center;" | triple-up major 6th,
| | | triple-up major 6th,<br>triple-down minor 7th |
| | | | ^<sup>3</sup>B, <br>v<sup>3</sup>C |
| triple-down minor 7th | |
| | style="text-align:center;" | ^<span style="font-size: 90%; vertical-align: super;">3</span>B, v<span style="font-size: 90%; vertical-align: super;">3</span>C
| |
| |- | | |- |
| | | 58
| | | 58 |
| | | 966.667
| | | 966.667 |
| | | 7/4
| | | 7/4 |
| | style="text-align:center;" | vvm7
| | | vvm7 |
| | style="text-align:center;" | double-downminor 7th
| | | double-downminor 7th |
| | style="text-align:center;" | vvC
| | | vvC |
| |- | | |- |
| | | 59
| | | 59 |
| | | 983.333
| | | 983.333 |
| | | 44/25
| | | 44/25 |
| | style="text-align:center;" | vm7
| | | vm7 |
| | style="text-align:center;" | downminor 7th
| | | downminor 7th |
| | style="text-align:center;" | vC
| | | vC |
| |- | | |- |
| | | 60
| | | 60 |
| | | 1000
| | | 1000.000 |
| | | 16/9
| | | 16/9 |
| | style="text-align:center;" | m7
| | | m7 |
| | style="text-align:center;" | minor 7th
| | | minor 7th |
| | style="text-align:center;" | C
| | | C |
| |- | | |- |
| | | 61
| | | 61 |
| | | 1016.667
| | | 1016.667 |
| | | 9/5
| | | 9/5 |
| | style="text-align:center;" | ^m7
| | | ^m7 |
| | style="text-align:center;" | upminor 7th
| | | upminor 7th |
| | style="text-align:center;" | ^C
| | | ^C |
| |- | | |- |
| | | 62
| | | 62 |
| | | 1033.333
| | | 1033.333 |
| | | 20/11
| | | 20/11 |
| | style="text-align:center;" | v~7
| | | v~7 |
| | style="text-align:center;" | downmid 7th
| | | downmid 7th |
| | style="text-align:center;" | ^^C
| | | ^^C |
| |- | | |- |
| | | 63
| | | 63 |
| | | 1050
| | | 1050.000 |
| | | 11/6
| | | 11/6 |
| | style="text-align:center;" | ~7
| | | ~7 |
| | style="text-align:center;" | mid 7th
| | | mid 7th |
| | style="text-align:center;" | ^<span style="font-size: 90%; vertical-align: super;">3</span>C
| | | ^<sup>3</sup>C |
| |- | | |- |
| | | 64
| | | 64 |
| | | 1066.667
| | | 1066.667 |
| | | 50/27
| | | 50/27 |
| | style="text-align:center;" | ^~7
| | | ^~7 |
| | style="text-align:center;" | upmid 7th
| | | upmid 7th |
| | style="text-align:center;" | vvC#
| | | vvC# |
| |- | | |- |
| | | 65
| | | 65 |
| | | 1083.333
| | | 1083.333 |
| | | 15/8
| | | 15/8 |
| | style="text-align:center;" | vM7
| | | vM7 |
| | style="text-align:center;" | downmajor 7th
| | | downmajor 7th |
| | style="text-align:center;" | vC#
| | | vC# |
| |- | | |- |
| | | 66
| | | 66 |
| | | 1100
| | | 1100.000 |
| | | 66/35, 17/9
| | | 66/35, 17/9 |
| | style="text-align:center;" | M7
| | | M7 |
| | style="text-align:center;" | major 7th
| | | major 7th |
| | style="text-align:center;" | C#
| | | C# |
| |- | | |- |
| | | 67
| | | 67 |
| | | 1116.667
| | | 1116.667 |
| | | 21/11
| | | 21/11 |
| | style="text-align:center;" | ^M7
| | | ^M7 |
| | style="text-align:center;" | upmajor 7th
| | | upmajor 7th |
| | style="text-align:center;" | ^C#
| | | ^C# |
| |- | | |- |
| | | 68
| | | 68 |
| | | 1133.333
| | | 1133.333 |
| | | 27/14
| | | 27/14 |
| | style="text-align:center;" | ^^M7
| | | ^^M7 |
| | style="text-align:center;" | double-upmajor 7th
| | | double-upmajor 7th |
| | style="text-align:center;" | ^^C#
| | | ^^C# |
| |- | | |- |
| | | 69
| | | 69 |
| | | 1150
| | | 1150.000 |
| | | 35/18
| | | 35/18 |
| | style="text-align:center;" | ^<span style="font-size: 90%; vertical-align: super;">3</span>M7, v<span style="font-size: 90%; vertical-align: super;">3</span>8
| | | ^<sup>3</sup>M7, <br>v<sup>3</sup>8 |
| | style="text-align:center;" | triple-up major 7th,
| | | triple-up major 7th,<br>triple-down octave |
| | | | ^<sup>3</sup>C#, <br>v<sup>3</sup>D |
| triple-down octave | |
| | style="text-align:center;" | ^<span style="font-size: 90%; vertical-align: super;">3</span>C#, v<span style="font-size: 90%; vertical-align: super;">3</span>D
| |
| |- | | |- |
| | | 70
| | | 70 |
| | | 1166.667
| | | 1166.667 |
| | | 49/25
| | | 49/25 |
| | style="text-align:center;" | vv8
| | | vv8 |
| | style="text-align:center;" | double-down octave
| | | double-down octave |
| | style="text-align:center;" | vvD
| | | vvD |
| |- | | |- |
| | | 71
| | | 71 |
| | | 1183.333
| | | 1183.333 |
| | | 99/50
| | | 99/50 |
| | style="text-align:center;" | v8
| | | v8 |
| | style="text-align:center;" | down octave
| | | down octave |
| | style="text-align:center;" | vD
| | | vD |
| |- | | |- |
| | | 72
| | | 72 |
| | | 1200
| | | 1200.000 |
| | | 2/1
| | | 2/1 |
| | style="text-align:center;" | P8
| | | P8 |
| | style="text-align:center;" | perfect octave
| | | perfect octave |
| | style="text-align:center;" | D
| | | D |
| |} | | |} |
| | |
| Combining ups and downs notation with [[Kite's_color_notation|color notation]], qualities can be loosely associated with colors: | | Combining ups and downs notation with [[Kite's_color_notation|color notation]], qualities can be loosely associated with colors: |
|
| |
|
| {| class="wikitable" | | {| class="wikitable center-all" |
| |- | | |- |
| ! | quality | | ! quality |
| ! | [[Kite's color notation|color]] | | ! [[Kite's color notation|color]] |
| ! | monzo format | | ! monzo format |
| ! | examples | | ! examples |
| |- | | |- |
| | style="text-align:center;" | double-down minor
| | | double-down minor |
| | style="text-align:center;" | zo
| | | zo |
| | style="text-align:center;" | {a, b, 0, 1}
| | | {a, b, 0, 1} |
| | style="text-align:center;" | 7/6, 7/4
| | | 7/6, 7/4 |
| |- | | |- |
| | style="text-align:center;" | minor
| | | minor |
| | style="text-align:center;" | fourthward wa
| | | fourthward wa |
| | style="text-align:center;" | {a, b}, b < -1
| | | {a, b}, b < -1 |
| | style="text-align:center;" | 32/27, 16/9
| | | 32/27, 16/9 |
| |- | | |- |
| | style="text-align:center;" | upminor
| | | upminor |
| | style="text-align:center;" | gu
| | | gu |
| | style="text-align:center;" | {a, b, -1}
| | | {a, b, -1} |
| | style="text-align:center;" | 6/5, 9/5
| | | 6/5, 9/5 |
| |- | | |- |
| | style="text-align:center;" | mid
| | | mid |
| | style="text-align:center;" | ilo
| | | ilo |
| | style="text-align:center;" | {a, b, 0, 0, 1}
| | | {a, b, 0, 0, 1} |
| | style="text-align:center;" | 11/9, 11/6
| | | 11/9, 11/6 |
| |- | | |- |
| | style="text-align:center;" | "
| | | " |
| | style="text-align:center;" | lu
| | | lu |
| | style="text-align:center;" | {a, b, 0, 0, -1}
| | | {a, b, 0, 0, -1} |
| | style="text-align:center;" | 12/11, 18/11
| | | 12/11, 18/11 |
| |- | | |- |
| | style="text-align:center;" | downmajor
| | | downmajor |
| | style="text-align:center;" | yo
| | | yo |
| | style="text-align:center;" | {a, b, 1}
| | | {a, b, 1} |
| | style="text-align:center;" | 5/4, 5/3
| | | 5/4, 5/3 |
| |- | | |- |
| | style="text-align:center;" | major
| | | major |
| | style="text-align:center;" | fifthward wa
| | | fifthward wa |
| | style="text-align:center;" | {a, b}, b > 1
| | | {a, b}, b > 1 |
| | style="text-align:center;" | 9/8, 27/16
| | | 9/8, 27/16 |
| |- | | |- |
| | style="text-align:center;" | double-up major
| | | double-up major |
| | style="text-align:center;" | ru
| | | ru |
| | style="text-align:center;" | {a, b, 0, -1}
| | | {a, b, 0, -1} |
| | style="text-align:center;" | 9/7, 12/7
| | | 9/7, 12/7 |
| |} | | |} |
| All 72-edo chords can be named using ups and downs. An up, down or mid after the chord root affects the 3rd, 6th, 7th, and/or the 11th (every other note of a stacked-3rds chord 6-1-3-5-7-9-11-13). Alterations are always enclosed in parentheses, additions never are. Here are the zo, gu, ilo, yo and ru triads: | | All 72-edo chords can be named using ups and downs. An up, down or mid after the chord root affects the 3rd, 6th, 7th, and/or the 11th (every other note of a stacked-3rds chord 6-1-3-5-7-9-11-13). Alterations are always enclosed in parentheses, additions never are. Here are the zo, gu, ilo, yo and ru triads: |
|
| |
|
| {| class="wikitable" | | {| class="wikitable center-all" |
| |- | | |- |
| ! | [[Kite's color notation|color of the 3rd]] | | ! [[Kite's color notation|color of the 3rd]] |
| ! | JI chord | | ! JI chord |
| ! | notes as edosteps | | ! notes as edosteps |
| ! | notes of C chord | | ! notes of C chord |
| ! | written name | | ! written name |
| ! | spoken name | | ! spoken name |
| |- | | |- |
| | style="text-align:center;" | zo
| | | zo |
| | style="text-align:center;" | 6:7:9
| | | 6:7:9 |
| | style="text-align:center;" | 0-16-42
| | | 0-16-42 |
| | style="text-align:center;" | C vvEb G
| | | C vvEb G |
| | style="text-align:center;" | Cvvm
| | | Cvvm |
| | style="text-align:center;" | C double-down minor
| | | C double-down minor |
| |- | | |- |
| | style="text-align:center;" | gu
| | | gu |
| | style="text-align:center;" | 10:12:15
| | | 10:12:15 |
| | style="text-align:center;" | 0-19-42
| | | 0-19-42 |
| | style="text-align:center;" | C ^Eb G
| | | C ^Eb G |
| | style="text-align:center;" | C^m
| | | C^m |
| | style="text-align:center;" | C upminor
| | | C upminor |
| |- | | |- |
| | style="text-align:center;" | ilo
| | | ilo |
| | style="text-align:center;" | 18:22:27
| | | 18:22:27 |
| | style="text-align:center;" | 0-21-42
| | | 0-21-42 |
| | style="text-align:center;" | C v<span style="font-size: 90%; vertical-align: super;">3</span>E G
| | | C v<span style="font-size: 90%; vertical-align: super;">3</span>E G |
| | style="text-align:center;" | C~
| | | C~ |
| | style="text-align:center;" | C mid
| | | C mid |
| |- | | |- |
| | style="text-align:center;" | yo
| | | yo |
| | style="text-align:center;" | 4:5:6
| | | 4:5:6 |
| | style="text-align:center;" | 0-23-42
| | | 0-23-42 |
| | style="text-align:center;" | C vE G
| | | C vE G |
| | style="text-align:center;" | Cv
| | | Cv |
| | style="text-align:center;" | C downmajor or C down
| | | C downmajor or C down |
| |- | | |- |
| | style="text-align:center;" | ru
| | | ru |
| | style="text-align:center;" | 14:18:27
| | | 14:18:27 |
| | style="text-align:center;" | 0-26-42
| | | 0-26-42 |
| | style="text-align:center;" | C ^^E G
| | | C ^^E G |
| | style="text-align:center;" | C^^
| | | C^^ |
| | style="text-align:center;" | C double-upmajor or C double-up
| | | C double-upmajor or C double-up |
| |} | | |} |
| For a more complete list, see [[Ups_and_Downs_Notation#Chord names in other EDOs|Ups and Downs Notation - Chord names in other EDOs]]. | | For a more complete list, see [[Ups and Downs Notation #Chord names in other EDOs]]. |
| ===Approximations to prime harmonics=== | | |
| {| class="wikitable" style="text-align:center;" | | == Just approximation == |
| | {| class="wikitable center-all" |
| ! | | ! |
| !prime 2 | | ! prime 2 |
| !prime 3 | | ! prime 3 |
| !prime 5 | | ! prime 5 |
| !prime 7 | | ! prime 7 |
| !prime 11 | | ! prime 11 |
| !prime 13 | | ! prime 13 |
| !prime 17 | | ! prime 17 |
| !prime 19 | | ! prime 19 |
| !prime 23 | | ! prime 23 |
| !prime 29 | | ! prime 29 |
| !prime 31 | | ! prime 31 |
| |- | | |- |
| !error | | ! error (¢) |
| |0.0¢ | | | 0.000 |
| | -1.955¢ | | | -1.955 |
| | -2.980¢ | | | -2.980 |
| | -2.159¢ | | | -2.159 |
| | -1.318¢ | | | -1.318 |
| | -7.194¢ | | | -7.194 |
| | -4.955¢ | | | -4.955 |
| | +2.487¢ | | | +2.487 |
| | +5.059¢ | | | +5.059 |
| | +3.755¢ | | | +3.755 |
| | -4.964¢ | | | -4.964 |
| |} | | |} |
|
| |
|
| =Commas= | | == Commas == |
|
| |
|
| Commas tempered out by 72edo include... | | Commas tempered out by 72edo include… |
|
| |
|
| {| class="wikitable" | | {| class="wikitable" |
Line 765: |
Line 754: |
| |} | | |} |
|
| |
|
| =Temperaments= | | == Temperaments == |
|
| |
|
| It provides the optimal patent val for miracle and wizard in the 7-limit, miracle, catakleismic, bikleismic, compton, ennealimnic, ennealiminal, enneaportent, marvolo and catalytic in the 11-limit, and catakleismic, bikleismic, compton, comptone, enneaportent, ennealim, catalytic, marvolo, manna, hendec, lizard, neominor, hours, and semimiracle in the 13-limit.
| | * [[List of edo-distinct 72et rank two temperaments]] |
|
| |
|
| See also [[List_of_edo-distinct_72et_rank_two_temperaments|List of edo-distinct 72et rank two temperaments]].
| | 72edo provides the [[optimal patent val]] for [[miracle]] and [[wizard]] in the 7-limit, miracle, [[catakleismic]], [[bikleismic]], [[compton]], [[ennealimnic]], [[ennealiminal]], [[enneaportent]], [[marvolo]] and [[catalytic]] in the 11-limit, and catakleismic, bikleismic, compton, [[comptone]], [[enneaportent]], [[ennealim]], catalytic, marvolo, [[manna]], [[hendec]], [[lizard]], [[neominor]], [[hours]], and [[semimiracle]] in the 13-limit. |
|
| |
|
| =Scales= | | {| class="wikitable center-1 center-2" |
| [[smithgw72a|smithgw72a]], [[smithgw72b|smithgw72b]], [[smithgw72c|smithgw72c]], [[smithgw72d|smithgw72d]], [[smithgw72e|smithgw72e]], [[smithgw72f|smithgw72f]], [[smithgw72g|smithgw72g]], [[smithgw72h|smithgw72h]], [[smithgw72i|smithgw72i]], [[smithgw72j|smithgw72j]] | | |- |
| | ! Periods<br>per octave |
| | ! Generator |
| | ! Names |
| | |- |
| | | 1 |
| | | 1\72 |
| | | [[Quincy]] |
| | |- |
| | | 1 |
| | | 5\72 |
| | | [[Marvolo]] |
| | |- |
| | | 1 |
| | | 7\72 |
| | | [[Miracle]]/benediction/manna |
| | |- |
| | | 1 |
| | | 11\72 |
| | | |
| | |- |
| | | 1 |
| | | 13\72 |
| | | |
| | |- |
| | | 1 |
| | | 17\72 |
| | | [[Neominor]] |
| | |- |
| | | 1 |
| | | 19\72 |
| | | [[Catakleismic]] |
| | |- |
| | | 1 |
| | | 23\72 |
| | | |
| | |- |
| | | 1 |
| | | 25\72 |
| | | [[Sqrtphi]] |
| | |- |
| | | 1 |
| | | 29\72 |
| | | |
| | |- |
| | | 1 |
| | | 31\72 |
| | | [[Marvo]]/zarvo |
| | |- |
| | | 1 |
| | | 35\72 |
| | | [[Cotritone]] |
| | |- |
| | | 2 |
| | | 1\72 |
| | | |
| | |- |
| | | 2 |
| | | 5\72 |
| | | [[Harry]] |
| | |- |
| | | 2 |
| | | 7\72 |
| | | |
| | |- |
| | | 2 |
| | | 11\72 |
| | | [[Unidec]]/hendec |
| | |- |
| | | 2 |
| | | 13\72 |
| | | [[Wizard]]/lizard/gizzard |
| | |- |
| | | 2 |
| | | 17\72 |
| | | |
| | |- |
| | | 3 |
| | | 1\72 |
| | | |
| | |- |
| | | 3 |
| | | 5\72 |
| | | [[Tritikleismic]] |
| | |- |
| | | 3 |
| | | 7\72 |
| | | |
| | |- |
| | | 3 |
| | | 11\72 |
| | | [[Mirkat]] |
| | |- |
| | | 4 |
| | | 1\72 |
| | | [[Quadritikleismic]] |
| | |- |
| | | 4 |
| | | 5\72 |
| | | |
| | |- |
| | | 4 |
| | | 7\72 |
| | | |
| | |- |
| | | 6 |
| | | 1\72 |
| | | |
| | |- |
| | | 6 |
| | | 5\72 |
| | | |
| | |- |
| | | 8 |
| | | 1\72 |
| | | [[Octoid]] |
| | |- |
| | | 8 |
| | | 2\72 |
| | | [[Octowerck]] |
| | |- |
| | | 8 |
| | | 4\72 |
| | | |
| | |- |
| | | 9 |
| | | 1\72 |
| | | |
| | |- |
| | | 9 |
| | | 3\72 |
| | | [[Ennealimmal]]/ennealimmic |
| | |- |
| | | 12 |
| | | 1\72 |
| | | [[Compton]] |
| | |- |
| | | 18 |
| | | 1\72 |
| | | [[Hemiennealimmal]] |
| | |- |
| | | 24 |
| | | 1\72 |
| | | [[Hours]] |
| | |- |
| | | 36 |
| | | 1\72 |
| | | |
| | |} |
|
| |
|
| [[blackjack|blackjack]], [[miracle_8|miracle_8]], [[miracle_10|miracle_10]], [[miracle_12|miracle_12]], [[miracle_12a|miracle_12a]], [[miracle_24hi|miracle_24hi]], [[miracle_24lo|miracle_24lo]] | | == Scales == |
| | * [[smithgw72a]], [[smithgw72b]], [[smithgw72c]], [[smithgw72d]], [[smithgw72e]], [[smithgw72f]], [[smithgw72g]], [[smithgw72h]], [[smithgw72i]], [[smithgw72j]] |
| | * [[blackjack]], [[miracle_8]], [[miracle_10]], [[miracle_12]], [[miracle_12a]], [[miracle_24hi]], [[miracle_24lo]] |
| | * [[keenanmarvel]], [[xenakis_chrome]], [[xenakis_diat]], [[xenakis_schrome]] |
| | * [[genus24255et72|Euler(24255) genus in 72 equal]] |
| | * [[JuneGloom]] |
|
| |
|
| [[keenanmarvel|keenanmarvel]], [[xenakis_chrome|xenakis_chrome]], [[xenakis_diat|xenakis_diat]], [[xenakis_schrome|xenakis_schrome]]
| | === Harmonic Scale === |
| | | Mode 8 of the harmonic series – [[overtone_scales|overtones 8 through 16]], octave repeating – is well-represented in 72edo. Note that all the different step sizes are distinguished, except for 13:12 and 14:13 (conflated to 8\72edo, 133.3 cents) and 15:14 and 16:15 (conflated to 7\72edo, 116.7 cents, the generator for miracle temperament). |
| [[genus24255et72|Euler(24255) genus in 72 equal]]
| |
| | |
| [[JuneGloom|JuneGloom]]
| |
| | |
| ==Harmonic Scale== | |
| Mode 8 of the harmonic series -- [[overtone_scales|overtones 8 through 16]], octave repeating -- is well-represented in 72edo. Note that all the different step sizes are distinguished, except for 13:12 and 14:13 (conflated to 8\72edo, 133.3 cents) and 15:14 and 16:15 (conflated to 7\72edo, 116.7 cents, the generator for miracle temperament). | |
|
| |
|
| {| class="wikitable" | | {| class="wikitable" |
Line 806: |
Line 942: |
| | | 16 | | | | 16 |
| |- | | |- |
| | | ...as JI Ratio from 1/1: | | | | …as JI Ratio from 1/1: |
| | | 1/1 | | | | 1/1 |
| | | | | | | |
Line 825: |
Line 961: |
| | | 2/1 | | | | 2/1 |
| |- | | |- |
| | | ...in cents: | | | | …in cents: |
| | | 0 | | | | 0 |
| | | | | | | |
Line 863: |
Line 999: |
| | | 72 | | | | 72 |
| |- | | |- |
| | | ...in cents: | | | | …in cents: |
| | | 0 | | | | 0 |
| | | | | | | |
Line 901: |
Line 1,037: |
| | | | | | | |
| |- | | |- |
| | | ...in cents: | | | | …in cents: |
| | | | | | | |
| | | 203.9 | | | | 203.9 |
Line 959: |
Line 1,095: |
| |} | | |} |
|
| |
|
| =Linear temperaments= | | == Z function == |
| | | 72edo is the ninth [[The_Riemann_Zeta_Function_and_Tuning #Zeta EDO lists|zeta integral edo]], as well as being a peak and gap edo, and the maximum value of the [[The_Riemann_Zeta_Function_and_Tuning #The Z function|Z function]] in the region near 72 occurs at 71.9506, giving an octave of 1200.824 cents, the stretched octaves of the zeta tuning. Below is a plot of Z in the region around 72. |
| {| class="wikitable"
| |
| |-
| |
| ! | Periods per octave
| |
| ! | Generator
| |
| ! | Names
| |
| |-
| |
| | | 1
| |
| | | 1\72
| |
| | | [[Quincy|quincy]]
| |
| |-
| |
| | | 1
| |
| | | 5\72
| |
| | | [[marvolo|marvolo]]
| |
| |-
| |
| | | 1
| |
| | | 7\72
| |
| | | [[Miracle|miracle]]/benediction/manna
| |
| |-
| |
| | | 1
| |
| | | 11\72
| |
| | |
| |
| |-
| |
| | | 1
| |
| | | 13\72
| |
| | |
| |
| |-
| |
| | | 1
| |
| | | 17\72
| |
| | | [[Neominor|neominor]]
| |
| |-
| |
| | | 1
| |
| | | 19\72
| |
| | | [[catakleismic|catakleismic]]
| |
| |-
| |
| | | 1
| |
| | | 23\72
| |
| | |
| |
| |-
| |
| | | 1
| |
| | | 25\72
| |
| | | [[Sqrtphi|sqrtphi]]
| |
| |-
| |
| | | 1
| |
| | | 29\72
| |
| | |
| |
| |-
| |
| | | 1
| |
| | | 31\72
| |
| | | [[Marvo|marvo]]/zarvo
| |
| |-
| |
| | | 1
| |
| | | 35\72
| |
| | | [[cotritone|cotritone]]
| |
| |-
| |
| | | 2
| |
| | | 1\72
| |
| | |
| |
| |-
| |
| | | 2
| |
| | | 5\72
| |
| | | [[Harry|harry]]
| |
| |-
| |
| | | 2
| |
| | | 7\72
| |
| | |
| |
| |-
| |
| | | 2
| |
| | | 11\72
| |
| | | [[Unidec|unidec]]/hendec
| |
| |-
| |
| | | 2
| |
| | | 13\72
| |
| | | [[wizard|wizard]]/lizard/gizzard
| |
| |-
| |
| | | 2
| |
| | | 17\72
| |
| | |
| |
| |-
| |
| | | 3
| |
| | | 1\72
| |
| | |
| |
| |-
| |
| | | 3
| |
| | | 5\72
| |
| | | [[Tritikleismic|tritikleismic]]
| |
| |-
| |
| | | 3
| |
| | | 7\72
| |
| | |
| |
| |-
| |
| | | 3
| |
| | | 11\72
| |
| | | [[Mirkat|mirkat]]
| |
| |-
| |
| | | 4
| |
| | | 1\72
| |
| | | [[Quadritikleismic|quadritikleismic]]
| |
| |-
| |
| | | 4
| |
| | | 5\72
| |
| | |
| |
| |-
| |
| | | 4
| |
| | | 7\72
| |
| | |
| |
| |-
| |
| | | 6
| |
| | | 1\72
| |
| | |
| |
| |-
| |
| | | 6
| |
| | | 5\72
| |
| | |
| |
| |-
| |
| | | 8
| |
| | | 1\72
| |
| | | [[Octoid|octoid]]
| |
| |-
| |
| | | 8
| |
| | | 2\72
| |
| | | [[Octowerck|octowerck]]
| |
| |-
| |
| | | 8
| |
| | | 4\72
| |
| | |
| |
| |-
| |
| | | 9
| |
| | | 1\72
| |
| | |
| |
| |-
| |
| | | 9
| |
| | | 3\72
| |
| | | [[Ennealimmal|ennealimmal]]/ennealimmic
| |
| |-
| |
| | | 12
| |
| | | 1\72
| |
| | | [[Compton|compton]]
| |
| |-
| |
| | | 18
| |
| | | 1\72
| |
| | | [[Hemiennealimmal|hemiennealimmal]]
| |
| |-
| |
| | | 24
| |
| | | 1\72
| |
| | | [[Hours|hours]]
| |
| |-
| |
| | | 36
| |
| | | 1\72
| |
| | |
| |
| |}
| |
| | |
| =Z function= | |
| 72edo is the ninth [[The_Riemann_Zeta_Function_and_Tuning#Zeta EDO lists|zeta integral edo]], as well as being a peak and gap edo, and the maximum value of the [[The_Riemann_Zeta_Function_and_Tuning#The Z function|Z function]] in the region near 72 occurs at 71.9506, giving an octave of 1200.824 cents, the stretched octaves of the zeta tuning. Below is a plot of Z in the region around 72. | |
|
| |
|
| [[File:plot72.png|alt=plot72.png|plot72.png]] | | [[File:plot72.png|alt=plot72.png|plot72.png]] |
|
| |
|
| =Music= | | == Music == |
| [http://www.archive.org/details/Kotekant Kotekant] ''[http://www.archive.org/download/Kotekant/kotekant.mp3 play]'' by [[Gene_Ward_Smith|Gene Ward Smith]] | | [http://www.archive.org/details/Kotekant Kotekant] ''[http://www.archive.org/download/Kotekant/kotekant.mp3 play]'' by [[Gene_Ward_Smith|Gene Ward Smith]] |
|
| |
|
Line 1,126: |
Line 1,109: |
| ''[http://micro.soonlabel.com/gene_ward_smith/Others/Rodgers/drum12a-c-t9.mp3 June Gloom #9]'' by Prent Rodgers | | ''[http://micro.soonlabel.com/gene_ward_smith/Others/Rodgers/drum12a-c-t9.mp3 June Gloom #9]'' by Prent Rodgers |
|
| |
|
| =External links= | | == External links == |
| <ul><li>[http://en.wikipedia.org/wiki/72_tone_equal_temperament Wikipedia article on 72edo]</li><li>[http://orthodoxwiki.org/Byzantine_Chant OrthodoxWiki Article on Byzantine chant, which uses 72edo]</li><li>[http://en.wikipedia.org/wiki/Joe_Maneri Wikipedia article on Joe Maneri (1927-2009)]</li><li>[http://www.ekmelic-music.org/en/ Ekmelic Music Society/Gesellschaft für Ekmelische Musik], a group of composers and researchers dedicated to 72edo music</li><li>[http://72note.com/site/original.html Rick Tagawa's 72edo site], including theory and composers' list</li><li>[http://www.myspace.com/dawier Danny Wier, composer and musician who specializes in 72-edo]</li></ul>
| | * [[Wikipedia:72_equal_temperament|72 equal temperament - Wikipedia]] |
| | * [http://orthodoxwiki.org/Byzantine_Chant OrthodoxWiki Article on Byzantine chant, which uses 72edo] |
| | * [http://en.wikipedia.org/wiki/Joe_Maneri Wikipedia article on Joe Maneri (1927-2009)] |
| | * [http://www.ekmelic-music.org/en/ Ekmelic Music Society/Gesellschaft für Ekmelische Musik], a group of composers and researchers dedicated to 72edo music |
| | * [http://72note.com/site/original.html Rick Tagawa's 72edo site], including theory and composers' list |
| | * [http://www.myspace.com/dawier Danny Wier, composer and musician who specializes in 72-edo] |
|
| |
|
| [[Category:Edo]] | | [[Category:Edo]] |