130edo: Difference between revisions
Jump to navigation
Jump to search
Wikispaces>genewardsmith **Imported revision 256758052 - Original comment: ** |
Wikispaces>genewardsmith **Imported revision 288013626 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011- | : This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-12-21 16:03:12 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>288013626</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
<h4>Original Wikitext content:</h4> | <h4>Original Wikitext content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">//130edo// divides the octave into 130 parts of size 9.231 cents each. It is the tenth [[The Riemann Zeta Function and Tuning#Zeta EDO lists|zeta integral edo]] but not a gap edo. It can be used to tune a variety of temperaments, including | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">//130edo// divides the octave into 130 parts of size 9.231 cents each. It is the tenth [[The Riemann Zeta Function and Tuning#Zeta EDO lists|zeta integral edo]] but not a gap edo. It can be used to tune a variety of temperaments, including hemiwürschmidt, sesquiquartififths, harry and hemischismic. It also can be used to tune the rank-three temperament [[Breed family#Jove, aka Wonder|jove]], tempering out 243/242 and 441/440, plus 364/363 for the 13-limit and 595/594 for the 17-limit. It gives the [[optimal patent val]] for 11-limit [[Würschmidt family#Hemiwürschmidt|hemiwürschmidt]] and [[Schismatic family#Sesquiquartififths|sesquart]] and 13-limit [[Breedsmic temperaments#Harry|harry]] temperaments. | ||
7-limit commas: 2401/2400, 3136/3125, 19683/19600 | 7-limit commas: 2401/2400, 3136/3125, 19683/19600 | ||
Line 154: | Line 154: | ||
[[http://www.archive.org/details/TheParadiseOfCantor|The Paradise of Cantor]] [[http://www.archive.org/download/TheParadiseOfCantor/cantor.mp3|play]] by [[Gene Ward Smith]]</pre></div> | [[http://www.archive.org/details/TheParadiseOfCantor|The Paradise of Cantor]] [[http://www.archive.org/download/TheParadiseOfCantor/cantor.mp3|play]] by [[Gene Ward Smith]]</pre></div> | ||
<h4>Original HTML content:</h4> | <h4>Original HTML content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>130edo</title></head><body><em>130edo</em> divides the octave into 130 parts of size 9.231 cents each. It is the tenth <a class="wiki_link" href="/The%20Riemann%20Zeta%20Function%20and%20Tuning#Zeta EDO lists">zeta integral edo</a> but not a gap edo. It can be used to tune a variety of temperaments, including | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>130edo</title></head><body><em>130edo</em> divides the octave into 130 parts of size 9.231 cents each. It is the tenth <a class="wiki_link" href="/The%20Riemann%20Zeta%20Function%20and%20Tuning#Zeta EDO lists">zeta integral edo</a> but not a gap edo. It can be used to tune a variety of temperaments, including hemiwürschmidt, sesquiquartififths, harry and hemischismic. It also can be used to tune the rank-three temperament <a class="wiki_link" href="/Breed%20family#Jove, aka Wonder">jove</a>, tempering out 243/242 and 441/440, plus 364/363 for the 13-limit and 595/594 for the 17-limit. It gives the <a class="wiki_link" href="/optimal%20patent%20val">optimal patent val</a> for 11-limit <a class="wiki_link" href="/W%C3%BCrschmidt%20family#Hemiwürschmidt">hemiwürschmidt</a> and <a class="wiki_link" href="/Schismatic%20family#Sesquiquartififths">sesquart</a> and 13-limit <a class="wiki_link" href="/Breedsmic%20temperaments#Harry">harry</a> temperaments.<br /> | ||
<br /> | <br /> | ||
7-limit commas: 2401/2400, 3136/3125, 19683/19600<br /> | 7-limit commas: 2401/2400, 3136/3125, 19683/19600<br /> |
Revision as of 16:03, 21 December 2011
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author genewardsmith and made on 2011-12-21 16:03:12 UTC.
- The original revision id was 288013626.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
//130edo// divides the octave into 130 parts of size 9.231 cents each. It is the tenth [[The Riemann Zeta Function and Tuning#Zeta EDO lists|zeta integral edo]] but not a gap edo. It can be used to tune a variety of temperaments, including hemiwürschmidt, sesquiquartififths, harry and hemischismic. It also can be used to tune the rank-three temperament [[Breed family#Jove, aka Wonder|jove]], tempering out 243/242 and 441/440, plus 364/363 for the 13-limit and 595/594 for the 17-limit. It gives the [[optimal patent val]] for 11-limit [[Würschmidt family#Hemiwürschmidt|hemiwürschmidt]] and [[Schismatic family#Sesquiquartififths|sesquart]] and 13-limit [[Breedsmic temperaments#Harry|harry]] temperaments. 7-limit commas: 2401/2400, 3136/3125, 19683/19600 11-limit commas: 441/440, 540/539, 3136/3125, 4000/3993 13-limit commas: 3136/3125, 243/242, 441/440, 351/350, 364/363 17-limit commas: 221/220, 364/363, 442/441, 595/594, 1275/1274, 4913/4875 ==Intervals== || degree of 130edo || cents value || associated temperament || || 0 || 0.00 || || || 1 || 9.23 || || || 2 || 18.46 || || || 3 || 27.69 || || || 4 || 36.92 || || || 5 || 46.15 || || || 6 || 55.38 || || || 7 || 64.62 || || || 8 || 73.85 || || || 9 || 83.08 || || || 10 || 92.31 || || || 11 || 101.54 || || || 12 || 110.77 || || || 13 || 120 || || || 14 || 129.23 || || || 15 || 138.46 || || || 16 || 147.69 || || || 17 || 156.92 || || || 18 || 166.15 || || || 19 || 175.38 || || || 20 || 184.62 || || || 21 || 193.85 || || || 22 || 203.08 || || || 23 || 212.31 || || || 24 || 221.54 || || || 25 || 230.77 || || || 26 || 240 || || || 27 || 249.23 || || || 28 || 258.46 || || || 29 || 267.69 || || || 30 || 276.92 || || || 31 || 286.15 || || || 32 || 295.38 || || || 33 || 304.62 || || || 34 || 313.85 || || || 35 || 323.08 || || || 36 || 332.31 || || || 37 || 341.54 || || || 38 || 350.77 || || || 39 || 360 || || || 40 || 369.23 || || || 41 || 378.46 || || || 42 || 387.69 || || || 43 || 396.92 || || || 44 || 406.15 || || || 45 || 415.38 || || || 46 || 424.62 || || || 47 || 433.85 || || || 48 || 443.08 || || || 49 || 452.31 || || || 50 || 461.54 || || || 51 || 470.77 || || || 52 || 480 || || || 53 || 489.23 || || || 54 || 498.46 || || || 55 || 507.69 || || || 56 || 516.92 || || || 57 || 526.15 || || || 58 || 535.38 || || || 59 || 544.62 || || || 60 || 553.85 || || || 61 || 563.08 || || || 62 || 572.31 || || || 63 || 581.54 || || || 64 || 590.77 || || || 65 || 600 || || || 66 || 609.23 || || || 67 || 618.46 || || || 68 || 627.69 || || || 69 || 636.92 || || || 70 || 646.15 || || || 71 || 655.38 || || || 72 || 664.62 || || || 73 || 673.85 || || || 74 || 683.08 || || || 75 || 692.31 || || || 76 || 701.54 || || || 77 || 710.77 || || || 78 || 720 || || || 79 || 729.23 || || || 80 || 738.46 || || || 81 || 747.69 || || || 82 || 756.92 || || || 83 || 766.15 || || || 84 || 775.38 || || || 85 || 784.62 || || || 86 || 793.85 || || || 87 || 803.08 || || || 88 || 812.31 || || || 89 || 821.54 || || || 90 || 830.77 || || || 91 || 840 || || || 92 || 849.23 || || || 93 || 858.46 || || || 94 || 867.69 || || || 95 || 876.92 || || || 96 || 886.15 || || || 97 || 895.38 || || || 98 || 904.62 || || || 99 || 913.85 || || || 100 || 923.08 || || || 101 || 932.31 || || || 102 || 941.54 || || || 103 || 950.77 || || || 104 || 960 || || || 105 || 969.23 || || || 106 || 978.46 || || || 107 || 987.69 || || || 108 || 996.92 || || || 109 || 1006.15 || || || 110 || 1015.38 || || || 111 || 1024.62 || || || 112 || 1033.85 || || || 113 || 1043.08 || || || 114 || 1052.31 || || || 115 || 1061.54 || || || 116 || 1070.77 || || || 117 || 1080 || || || 118 || 1089.23 || || || 119 || 1098.46 || || || 120 || 1107.69 || || || 121 || 1116.92 || || || 122 || 1126.15 || || || 123 || 1135.38 || || || 124 || 1144.62 || || || 125 || 1153.85 || || || 126 || 1163.08 || || || 127 || 1172.31 || || || 128 || 1181.54 || || || 129 || 1190.77 || || ==Music== [[http://www.archive.org/details/TheParadiseOfCantor|The Paradise of Cantor]] [[http://www.archive.org/download/TheParadiseOfCantor/cantor.mp3|play]] by [[Gene Ward Smith]]
Original HTML content:
<html><head><title>130edo</title></head><body><em>130edo</em> divides the octave into 130 parts of size 9.231 cents each. It is the tenth <a class="wiki_link" href="/The%20Riemann%20Zeta%20Function%20and%20Tuning#Zeta EDO lists">zeta integral edo</a> but not a gap edo. It can be used to tune a variety of temperaments, including hemiwürschmidt, sesquiquartififths, harry and hemischismic. It also can be used to tune the rank-three temperament <a class="wiki_link" href="/Breed%20family#Jove, aka Wonder">jove</a>, tempering out 243/242 and 441/440, plus 364/363 for the 13-limit and 595/594 for the 17-limit. It gives the <a class="wiki_link" href="/optimal%20patent%20val">optimal patent val</a> for 11-limit <a class="wiki_link" href="/W%C3%BCrschmidt%20family#Hemiwürschmidt">hemiwürschmidt</a> and <a class="wiki_link" href="/Schismatic%20family#Sesquiquartififths">sesquart</a> and 13-limit <a class="wiki_link" href="/Breedsmic%20temperaments#Harry">harry</a> temperaments.<br /> <br /> 7-limit commas: 2401/2400, 3136/3125, 19683/19600<br /> <br /> 11-limit commas: 441/440, 540/539, 3136/3125, 4000/3993<br /> <br /> 13-limit commas: 3136/3125, 243/242, 441/440, 351/350, 364/363<br /> <br /> 17-limit commas: 221/220, 364/363, 442/441, 595/594, 1275/1274, 4913/4875<br /> <br /> <!-- ws:start:WikiTextHeadingRule:0:<h2> --><h2 id="toc0"><a name="x-Intervals"></a><!-- ws:end:WikiTextHeadingRule:0 -->Intervals</h2> <br /> <table class="wiki_table"> <tr> <td>degree of 130edo<br /> </td> <td>cents value<br /> </td> <td>associated temperament<br /> </td> </tr> <tr> <td>0<br /> </td> <td>0.00<br /> </td> <td><br /> </td> </tr> <tr> <td>1<br /> </td> <td>9.23<br /> </td> <td><br /> </td> </tr> <tr> <td>2<br /> </td> <td>18.46<br /> </td> <td><br /> </td> </tr> <tr> <td>3<br /> </td> <td>27.69<br /> </td> <td><br /> </td> </tr> <tr> <td>4<br /> </td> <td>36.92<br /> </td> <td><br /> </td> </tr> <tr> <td>5<br /> </td> <td>46.15<br /> </td> <td><br /> </td> </tr> <tr> <td>6<br /> </td> <td>55.38<br /> </td> <td><br /> </td> </tr> <tr> <td>7<br /> </td> <td>64.62<br /> </td> <td><br /> </td> </tr> <tr> <td>8<br /> </td> <td>73.85<br /> </td> <td><br /> </td> </tr> <tr> <td>9<br /> </td> <td>83.08<br /> </td> <td><br /> </td> </tr> <tr> <td>10<br /> </td> <td>92.31<br /> </td> <td><br /> </td> </tr> <tr> <td>11<br /> </td> <td>101.54<br /> </td> <td><br /> </td> </tr> <tr> <td>12<br /> </td> <td>110.77<br /> </td> <td><br /> </td> </tr> <tr> <td>13<br /> </td> <td>120<br /> </td> <td><br /> </td> </tr> <tr> <td>14<br /> </td> <td>129.23<br /> </td> <td><br /> </td> </tr> <tr> <td>15<br /> </td> <td>138.46<br /> </td> <td><br /> </td> </tr> <tr> <td>16<br /> </td> <td>147.69<br /> </td> <td><br /> </td> </tr> <tr> <td>17<br /> </td> <td>156.92<br /> </td> <td><br /> </td> </tr> <tr> <td>18<br /> </td> <td>166.15<br /> </td> <td><br /> </td> </tr> <tr> <td>19<br /> </td> <td>175.38<br /> </td> <td><br /> </td> </tr> <tr> <td>20<br /> </td> <td>184.62<br /> </td> <td><br /> </td> </tr> <tr> <td>21<br /> </td> <td>193.85<br /> </td> <td><br /> </td> </tr> <tr> <td>22<br /> </td> <td>203.08<br /> </td> <td><br /> </td> </tr> <tr> <td>23<br /> </td> <td>212.31<br /> </td> <td><br /> </td> </tr> <tr> <td>24<br /> </td> <td>221.54<br /> </td> <td><br /> </td> </tr> <tr> <td>25<br /> </td> <td>230.77<br /> </td> <td><br /> </td> </tr> <tr> <td>26<br /> </td> <td>240<br /> </td> <td><br /> </td> </tr> <tr> <td>27<br /> </td> <td>249.23<br /> </td> <td><br /> </td> </tr> <tr> <td>28<br /> </td> <td>258.46<br /> </td> <td><br /> </td> </tr> <tr> <td>29<br /> </td> <td>267.69<br /> </td> <td><br /> </td> </tr> <tr> <td>30<br /> </td> <td>276.92<br /> </td> <td><br /> </td> </tr> <tr> <td>31<br /> </td> <td>286.15<br /> </td> <td><br /> </td> </tr> <tr> <td>32<br /> </td> <td>295.38<br /> </td> <td><br /> </td> </tr> <tr> <td>33<br /> </td> <td>304.62<br /> </td> <td><br /> </td> </tr> <tr> <td>34<br /> </td> <td>313.85<br /> </td> <td><br /> </td> </tr> <tr> <td>35<br /> </td> <td>323.08<br /> </td> <td><br /> </td> </tr> <tr> <td>36<br /> </td> <td>332.31<br /> </td> <td><br /> </td> </tr> <tr> <td>37<br /> </td> <td>341.54<br /> </td> <td><br /> </td> </tr> <tr> <td>38<br /> </td> <td>350.77<br /> </td> <td><br /> </td> </tr> <tr> <td>39<br /> </td> <td>360<br /> </td> <td><br /> </td> </tr> <tr> <td>40<br /> </td> <td>369.23<br /> </td> <td><br /> </td> </tr> <tr> <td>41<br /> </td> <td>378.46<br /> </td> <td><br /> </td> </tr> <tr> <td>42<br /> </td> <td>387.69<br /> </td> <td><br /> </td> </tr> <tr> <td>43<br /> </td> <td>396.92<br /> </td> <td><br /> </td> </tr> <tr> <td>44<br /> </td> <td>406.15<br /> </td> <td><br /> </td> </tr> <tr> <td>45<br /> </td> <td>415.38<br /> </td> <td><br /> </td> </tr> <tr> <td>46<br /> </td> <td>424.62<br /> </td> <td><br /> </td> </tr> <tr> <td>47<br /> </td> <td>433.85<br /> </td> <td><br /> </td> </tr> <tr> <td>48<br /> </td> <td>443.08<br /> </td> <td><br /> </td> </tr> <tr> <td>49<br /> </td> <td>452.31<br /> </td> <td><br /> </td> </tr> <tr> <td>50<br /> </td> <td>461.54<br /> </td> <td><br /> </td> </tr> <tr> <td>51<br /> </td> <td>470.77<br /> </td> <td><br /> </td> </tr> <tr> <td>52<br /> </td> <td>480<br /> </td> <td><br /> </td> </tr> <tr> <td>53<br /> </td> <td>489.23<br /> </td> <td><br /> </td> </tr> <tr> <td>54<br /> </td> <td>498.46<br /> </td> <td><br /> </td> </tr> <tr> <td>55<br /> </td> <td>507.69<br /> </td> <td><br /> </td> </tr> <tr> <td>56<br /> </td> <td>516.92<br /> </td> <td><br /> </td> </tr> <tr> <td>57<br /> </td> <td>526.15<br /> </td> <td><br /> </td> </tr> <tr> <td>58<br /> </td> <td>535.38<br /> </td> <td><br /> </td> </tr> <tr> <td>59<br /> </td> <td>544.62<br /> </td> <td><br /> </td> </tr> <tr> <td>60<br /> </td> <td>553.85<br /> </td> <td><br /> </td> </tr> <tr> <td>61<br /> </td> <td>563.08<br /> </td> <td><br /> </td> </tr> <tr> <td>62<br /> </td> <td>572.31<br /> </td> <td><br /> </td> </tr> <tr> <td>63<br /> </td> <td>581.54<br /> </td> <td><br /> </td> </tr> <tr> <td>64<br /> </td> <td>590.77<br /> </td> <td><br /> </td> </tr> <tr> <td>65<br /> </td> <td>600<br /> </td> <td><br /> </td> </tr> <tr> <td>66<br /> </td> <td>609.23<br /> </td> <td><br /> </td> </tr> <tr> <td>67<br /> </td> <td>618.46<br /> </td> <td><br /> </td> </tr> <tr> <td>68<br /> </td> <td>627.69<br /> </td> <td><br /> </td> </tr> <tr> <td>69<br /> </td> <td>636.92<br /> </td> <td><br /> </td> </tr> <tr> <td>70<br /> </td> <td>646.15<br /> </td> <td><br /> </td> </tr> <tr> <td>71<br /> </td> <td>655.38<br /> </td> <td><br /> </td> </tr> <tr> <td>72<br /> </td> <td>664.62<br /> </td> <td><br /> </td> </tr> <tr> <td>73<br /> </td> <td>673.85<br /> </td> <td><br /> </td> </tr> <tr> <td>74<br /> </td> <td>683.08<br /> </td> <td><br /> </td> </tr> <tr> <td>75<br /> </td> <td>692.31<br /> </td> <td><br /> </td> </tr> <tr> <td>76<br /> </td> <td>701.54<br /> </td> <td><br /> </td> </tr> <tr> <td>77<br /> </td> <td>710.77<br /> </td> <td><br /> </td> </tr> <tr> <td>78<br /> </td> <td>720<br /> </td> <td><br /> </td> </tr> <tr> <td>79<br /> </td> <td>729.23<br /> </td> <td><br /> </td> </tr> <tr> <td>80<br /> </td> <td>738.46<br /> </td> <td><br /> </td> </tr> <tr> <td>81<br /> </td> <td>747.69<br /> </td> <td><br /> </td> </tr> <tr> <td>82<br /> </td> <td>756.92<br /> </td> <td><br /> </td> </tr> <tr> <td>83<br /> </td> <td>766.15<br /> </td> <td><br /> </td> </tr> <tr> <td>84<br /> </td> <td>775.38<br /> </td> <td><br /> </td> </tr> <tr> <td>85<br /> </td> <td>784.62<br /> </td> <td><br /> </td> </tr> <tr> <td>86<br /> </td> <td>793.85<br /> </td> <td><br /> </td> </tr> <tr> <td>87<br /> </td> <td>803.08<br /> </td> <td><br /> </td> </tr> <tr> <td>88<br /> </td> <td>812.31<br /> </td> <td><br /> </td> </tr> <tr> <td>89<br /> </td> <td>821.54<br /> </td> <td><br /> </td> </tr> <tr> <td>90<br /> </td> <td>830.77<br /> </td> <td><br /> </td> </tr> <tr> <td>91<br /> </td> <td>840<br /> </td> <td><br /> </td> </tr> <tr> <td>92<br /> </td> <td>849.23<br /> </td> <td><br /> </td> </tr> <tr> <td>93<br /> </td> <td>858.46<br /> </td> <td><br /> </td> </tr> <tr> <td>94<br /> </td> <td>867.69<br /> </td> <td><br /> </td> </tr> <tr> <td>95<br /> </td> <td>876.92<br /> </td> <td><br /> </td> </tr> <tr> <td>96<br /> </td> <td>886.15<br /> </td> <td><br /> </td> </tr> <tr> <td>97<br /> </td> <td>895.38<br /> </td> <td><br /> </td> </tr> <tr> <td>98<br /> </td> <td>904.62<br /> </td> <td><br /> </td> </tr> <tr> <td>99<br /> </td> <td>913.85<br /> </td> <td><br /> </td> </tr> <tr> <td>100<br /> </td> <td>923.08<br /> </td> <td><br /> </td> </tr> <tr> <td>101<br /> </td> <td>932.31<br /> </td> <td><br /> </td> </tr> <tr> <td>102<br /> </td> <td>941.54<br /> </td> <td><br /> </td> </tr> <tr> <td>103<br /> </td> <td>950.77<br /> </td> <td><br /> </td> </tr> <tr> <td>104<br /> </td> <td>960<br /> </td> <td><br /> </td> </tr> <tr> <td>105<br /> </td> <td>969.23<br /> </td> <td><br /> </td> </tr> <tr> <td>106<br /> </td> <td>978.46<br /> </td> <td><br /> </td> </tr> <tr> <td>107<br /> </td> <td>987.69<br /> </td> <td><br /> </td> </tr> <tr> <td>108<br /> </td> <td>996.92<br /> </td> <td><br /> </td> </tr> <tr> <td>109<br /> </td> <td>1006.15<br /> </td> <td><br /> </td> </tr> <tr> <td>110<br /> </td> <td>1015.38<br /> </td> <td><br /> </td> </tr> <tr> <td>111<br /> </td> <td>1024.62<br /> </td> <td><br /> </td> </tr> <tr> <td>112<br /> </td> <td>1033.85<br /> </td> <td><br /> </td> </tr> <tr> <td>113<br /> </td> <td>1043.08<br /> </td> <td><br /> </td> </tr> <tr> <td>114<br /> </td> <td>1052.31<br /> </td> <td><br /> </td> </tr> <tr> <td>115<br /> </td> <td>1061.54<br /> </td> <td><br /> </td> </tr> <tr> <td>116<br /> </td> <td>1070.77<br /> </td> <td><br /> </td> </tr> <tr> <td>117<br /> </td> <td>1080<br /> </td> <td><br /> </td> </tr> <tr> <td>118<br /> </td> <td>1089.23<br /> </td> <td><br /> </td> </tr> <tr> <td>119<br /> </td> <td>1098.46<br /> </td> <td><br /> </td> </tr> <tr> <td>120<br /> </td> <td>1107.69<br /> </td> <td><br /> </td> </tr> <tr> <td>121<br /> </td> <td>1116.92<br /> </td> <td><br /> </td> </tr> <tr> <td>122<br /> </td> <td>1126.15<br /> </td> <td><br /> </td> </tr> <tr> <td>123<br /> </td> <td>1135.38<br /> </td> <td><br /> </td> </tr> <tr> <td>124<br /> </td> <td>1144.62<br /> </td> <td><br /> </td> </tr> <tr> <td>125<br /> </td> <td>1153.85<br /> </td> <td><br /> </td> </tr> <tr> <td>126<br /> </td> <td>1163.08<br /> </td> <td><br /> </td> </tr> <tr> <td>127<br /> </td> <td>1172.31<br /> </td> <td><br /> </td> </tr> <tr> <td>128<br /> </td> <td>1181.54<br /> </td> <td><br /> </td> </tr> <tr> <td>129<br /> </td> <td>1190.77<br /> </td> <td><br /> </td> </tr> </table> <br /> <br /> <!-- ws:start:WikiTextHeadingRule:2:<h2> --><h2 id="toc1"><a name="x-Music"></a><!-- ws:end:WikiTextHeadingRule:2 -->Music</h2> <a class="wiki_link_ext" href="http://www.archive.org/details/TheParadiseOfCantor" rel="nofollow">The Paradise of Cantor</a> <a class="wiki_link_ext" href="http://www.archive.org/download/TheParadiseOfCantor/cantor.mp3" rel="nofollow">play</a> by <a class="wiki_link" href="/Gene%20Ward%20Smith">Gene Ward Smith</a></body></html>